Skip to main content
Log in

Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Embedding capacities of steganographic information security systems have remained relatively low due to the adverse effect on perceptibility, where researchers had to trade-off between higher capacities and reduced perceptual quality or choose higher perceptual quality albeit at the expense of lower capacities. This paper proposes a novel approach for color image steganography, in the discrete cosine transform (DCT) domain, that promotes optimal embedding capacity while improving stego image quality. The proposed approach is based on the observation that the space reserved for embedding the secret data varies with the statistical characteristics of the cover image and exploits a quad-tree adaptive-region embedding scheme to individuate “good” cover image segments, in relation to the correlation of pixels, for embedding the secret information. We will demonstrate that our scheme exhibits enhanced hiding capacity and perceptibility in comparison to techniques adopting fixed-block-size adaptive-regions in the DCT domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahmed N, Natarajan T, Rao K (1974) Discrete cosine transform. IEEE Trans Comput 23(1):90–93

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson RJ, Petitcolas FA (1998) On the limits of steganography. IEEE Journal on Selected Areas in Communications 16(4):474–481

    Article  Google Scholar 

  3. Bracamonte J, Ansorge M, Pellandini F, Farine PA (2000) Low complexity image matching in the compressed domain by using the dct-phase. In: Proceedings of the 6th COST, vol 276, pp 88–93

  4. Bracamonte J, Ansorge M, Pellandini F, Farine PA (2005) Efficient compressed domain target image search and retrieval. In: Image and video retrieval, pp 154–163. Springer

  5. Brisbane G, Aini RSN, Ogunbona P (2005) High-capacity steganography using a shared colour palette. IEE Proc Vis Image Signal Process 152(6):787–792

    Article  Google Scholar 

  6. Castleman K (1996) Digital image processing. Prentice hall, upper saddle

    Google Scholar 

  7. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Processing 14(2):253–266

    Article  Google Scholar 

  8. Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inf Sci 141:123–138

    Article  MATH  Google Scholar 

  9. Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inf Sci 141(1):123–138

    Article  MATH  Google Scholar 

  10. Chang CC, Chen YH, Lin CC (2008) A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding. Soft Comput 13:21–331

    Google Scholar 

  11. Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recogn 36 (7):1595–1683

    Article  Google Scholar 

  12. Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in dct-based compressed images. Inf Sci 177:2768–2786

    Article  Google Scholar 

  13. Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits and Systems for Video Technology 16(10):1301–1308

    Article  Google Scholar 

  14. Chen B, Wornell G (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen WY, Chen CH (2003) Public-key image steganography using discrete cosine transform and quadtree partition vector quantization coding. Opt Eng 42(10):2886–2892

    Article  Google Scholar 

  16. Chung KL, Shen CH, Chang LC (2001) A novel svd- and vq-based image hiding scheme. Pattern Recogn Lett 22(9):1051–1058

    Article  MATH  Google Scholar 

  17. Cole E (2003) Hiding in Plain Sight: Steganography and the Art of Covert Communication, 1st edn. Wiley, New York

    Google Scholar 

  18. Curran K, Bailey K (2003) An evaluation of image based steganography methods. International Journal of Digital Evidence 2(2):1–40

    Google Scholar 

  19. Ebrahimpour-Komleh H, Chandran V, Sridharan S (2001) Face recognition using fractal codes. In: Proceedings of the 2001 international conference on Image processing, 2001, vol 3, pp 58–61. IEEE

  20. Iwata M, Miyake K, Shiozaki A (2004) Digital steganography utilizing features of jpeg images. IEICE Trans Fundam E87-A(4):929–936

    Google Scholar 

  21. Lee Y, Chen L (2000) High capacity image steganographic model. IEE Proc Vis Image Signal Process 147(3):288–294

    Article  Google Scholar 

  22. Lin CC, Shiu PF (2009) Dct-based reversible data hiding scheme. In: Proceedings of the 3rd international conference on ubiquitous information management and communication (ICUIMC09), pp 327–335

  23. Lin CC, Shiu PF (2010) High capacity data hiding scheme for dct-based images. Journal of Information Hiding and Multimedia Signal Processing 1(3):220–240

    Google Scholar 

  24. Lin CY, Chang CC, Wang YZ (2008) Reversible steganographic method with high payload for jpeg images. IEICE Trans. Inf Syst 91-D(3):836–845

    Google Scholar 

  25. Mozaffari S, Faez K, Ziaratban M (2005) Character representation and recognition using quad tree-based fractal encoding scheme. In: Proceedings of the 8th international conference on Document analysis and recognition, 2005, pp 819–823. IEEE

  26. Pavlidis G, Tsompanopoulos A, Papamarkos N, Chamzas C (2003) Jpeg2000 over noisy communication channels thorough evaluation and cost analysis. Signal Process Image Commun 18(6):497–514

    Article  Google Scholar 

  27. Qin C, Chang CC, Chiu YP (2014) A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans Image Process 23(3):969–978

    Article  MathSciNet  Google Scholar 

  28. Qin C, Chang CC, Hsu TJ (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimedia Tools and Applications 74(15):5861–5872

    Article  Google Scholar 

  29. Qin C, Chang CC, Huang YH, Liao LT (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Transactions on Circuits and Systems for Video Technology 23(7):1109–1118

    Article  Google Scholar 

  30. Qin C, Zhang X (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164

    Article  Google Scholar 

  31. Rabie T (2005) Robust estimation approach for blind denoising. IEEE Trans Image Processing 14(11):1755–1765

    Article  Google Scholar 

  32. Rabie T (2007) Frequency-domain data hiding based on the matryoshka principle. Special Issue on Advances in Video Processing and Security Analysis for Multimedia Communications. International Journal of Advanced Media and Communication 1 (3):298–312

    Article  Google Scholar 

  33. Rabie T (2012) Digital image steganography: an fft approach. In: 4Th international conference on networked digital technologies (NDT), pp 217–230. Springer

  34. Rabie T (2013) High-capacity steganography. In: 6Th international congress on image and signal processing (CISP), vol 2, pp 858–863

  35. Rabie T, Kamel I (2015) On the embedding limits of the discrete cosine transform. Multimedia Tools and Applications 74(8). doi:10.1007/s11042-015-2557-x

  36. Rabie T, Kamel I (2016) High-capacity steganography: A global-adaptive-region discrete cosine transform approach. Multimedia Tools and Applications 75(2). doi:10.1007/s11042-016-3301-x

  37. Rao K, Yip P (1990) Discrete cosine transform: Algorithms, Advantages, Applications. Academic Press, Boston. ISBN 0-12-580203-X

    Book  MATH  Google Scholar 

  38. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits and Systems for Video Technology 13(8):890–896

    Article  Google Scholar 

  39. Tsai P, Hu YC, Chang CC (2002) An image hiding technique using block truncation coding. In: Proceedings of pacific rim workshop on digital steganography, pp 54–64

  40. Wang X, Yao Z, Li CT (2005) A palette-based image steganographic method using colour quantisation. In: Proceedings of the IEEE international conference on image processing (ICIP), pp II – 1090–3

  41. Wang Z, Bovik AC (2009) Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Proc Mag 26(1):98–117

    Article  Google Scholar 

  42. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  43. Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer dct-based reversible watermarking for images using companding technique. Proc SPIE 5306, Security, Steganography and Watermarking of Multimedia Contents 6(405)

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions that helped improve the original manuscript. This work was supported by the College of Graduate Studies and Research at the University of Sharjah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Rabie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabie, T., Kamel, I. Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach. Multimed Tools Appl 76, 8627–8650 (2017). https://doi.org/10.1007/s11042-016-3501-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3501-4

Keywords

Navigation