Skip to main content
Log in

High-capacity steganography: a global-adaptive-region discrete cosine transform approach

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

An increasing number of spatial and frequency domain data hiding techniques have been proposed to address the relatively low embedding capacities of image-based steganography. These techniques have brought promise of higher embedding capacities, albeit at the expense of lower perceptibility. This work proposes a new discrete cosine transform (DCT) approach for color image steganography and implements a global-adaptive-region (GAR) embedding scheme that allows for extremely high embedding capacities while maintaining enhanced perceptibility. The idea is to adapt the variable region size, used to hide the data, in each DCT block of the cover image to the amount of correlation of the image values in the corresponding block. We will demonstrate how this new technique achieves enhanced hiding capacities and perceptibility compared to other spatial, Fourier, and adaptive-region DCT based steganography schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For JPEG standard the block size m×m is 8×8

References

  1. Ahmed N, Natarajan T, Rao K (1974) Discrete cosine transform. IEEE Trans Comput 23(1):90–93

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson RJ, Petitcolas FA (1998) On the limits of steganography. IEEE J Sel Areas Commun 16(4):474–481

    Article  Google Scholar 

  3. Bracamonte J, Ansorge M, Pellandini F, Farine PA (2000) Low complexity image matching in the compressed domain by using the dct-phase. In: Proc. of the 6th COST, vol 276, pp 88–93

  4. Bracamonte J, Ansorge M, Pellandini F, Farine PA (2005) Efficient compressed domain target image search and retrieval. In: Image and Video Retrieval, pp 154–163. Springer

  5. Brisbane G, aini RSN, Ogunbona P (2005) High-capacity steganography using a shared colour palette. IEE Proc., Vis. Image Signal Process 152(6):787–792

    Article  Google Scholar 

  6. Castleman K (1996) Digital Image Processing. Prentice Hall, Upper Saddle NJ

  7. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  8. Chan CK, Cheng L (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37:469–474

    Article  MATH  Google Scholar 

  9. Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inform Sci 141:123–138

    Article  MATH  Google Scholar 

  10. Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inform Sci 141(1):123–138

    Article  MATH  Google Scholar 

  11. Chang CC, Chen YH, Lin CC (2008) A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding. Soft Comput 13:21–331

    Google Scholar 

  12. Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recogn 36 (7):1595–1683

    Article  Google Scholar 

  13. Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in dct-based compressed images. Inform Sci 177:2768–2786

    Article  Google Scholar 

  14. Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits Syst Video Technol 16(10):1301–1308

    Article  Google Scholar 

  15. Chen B, Wornell G (2001) Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung KL, Shen CH, Chang LC (2001) A novel svd- and vq-based image hiding scheme. Pattern Recogn Lett 22(9):1051–1058

    Article  MATH  Google Scholar 

  17. Curran K, Bailey K (2003) An evaluation of image based steganography methods. Intern J Digital Evidence 2(2):1–40

    Google Scholar 

  18. IEC I (1994) Information technology-digital compression and coding of continuous-tone still images: Requirements and guidelines. Standard, ISO IEC pp. 10, 918–1

  19. Iwata M, Miyake K, Shiozaki A (2004) Digital steganography utilizing features of jpeg images. IEICE Trans Fundam E87-A(4):929–936

    Google Scholar 

  20. Jain A, Uludag U, Hsu R (2002) Hiding a face in a fingerprint image. In: Proc. of the International Conference on Pattern Recognition (ICPR). Quebec City, Canada

  21. Lee Y, Chen L (2000) High capacity image steganographic model. IEE Proc., Vis. Image Signal Process 147(3):288–294

    Article  Google Scholar 

  22. Lin CC, Shiu PF (2009) Dct-based reversible data hiding scheme. In: Proc. of the 3rd International Conference on Ubiquitous Information Management and Communication (ICUIMC09), pp 327–335

  23. Lin CC, Shiu PF (2010) High capacity data hiding scheme for dct-based images. J Inform Hiding Multi Signal Process 1(3):220–240

    Google Scholar 

  24. Lin CY, Chang CC, Wang YZ (2008) Reversible steganographic method with high payload for jpeg images. IEICE Trans. Inf Syst 91-D(3):836–845

    Google Scholar 

  25. Marvel LM, Charles G, Boncelet J, Retter CT (1999) Spread spectrum image steganography. IEEE Trans Image Process 8(8):1075–1083

    Article  Google Scholar 

  26. Nozaki K, Niimi M, Eason RO, Kawaguchi E (1998) A large capacity steganography using color bmp images

  27. Pavlidis G, Tsompanopoulos A, Papamarkos N, Chamzas C (2003) Jpeg2000 over noisy communication channels thorough evaluation and cost analysis. Signal Process Image Commun 18(6):497–514

    Article  Google Scholar 

  28. Petitcolas FA, Anderson RJ, Kuhn MG (1999) Information hiding-A survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  29. Provos N, Honeyman P (2003) Hide and seek: An introduction to steganography. In: IEEE Security & Privacy Magazine, pp 32–44. IEEE Computer Society

  30. Qazanfari K, Safabakhsh R (2013) High-capacity method for hiding data in the discrete cosine transform domain. J Electron Imaging 22(4):043,009–043,009

    Article  Google Scholar 

  31. Rabie T (2007) Frequency-domain data hiding based on the matryoshka principle. Special Issue on Advances in Video Processing and Security Analysis for Multimedia Communications. Intern J Advanced Media and Commun 1(3):298–312

    Article  Google Scholar 

  32. Rabie T (2012) Digital image steganography: An fft approach. In: 4th International Conference on Networked Digital Technologies (NDT), pp 217–230. Springer Verlag

  33. Rabie T (2013) High-capacity steganography. In: 6th International Congress on Image and Signal Processing (CISP), vol 2, pp 858–863

  34. Rabie T, Kamel I (2015) On the embedding limits of the discrete cosine transform. Multimedia Tools Appl. http://link.springer.com/article/10.1007/s11042-015-2557-x

  35. Rao K, Yip P (1990) Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, ISBN 0-12-580203-X Boston

  36. Rodrigues J, Rios J, Puech W, et al. (2004) Ssb-4 system of steganography using bit 4. In: 5th International Workshop on Image Analysis for Multimedia Interactive Services

  37. Solanki K, Jacobsen N, Madhow U, Manjunath BS, Chandrasekaran S (2004) Robust image-adaptive data hiding using erasure and error correction. IEEE Trans Image Process 13(12):1627–1639

    Article  Google Scholar 

  38. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  39. Tsai P, Hu YC, Chang CC (2002) An image hiding technique using block truncation coding. In: Proc. of Pacific Rim Workshop on Digital Steganography, pp 54–64

  40. Wang X, Yao Z, Li CT (2005) A palette-based image steganographic method using colour quantisation. In: Proc. of the IEEE International Conference on Image Processing (ICIP), pp II – 1090–3

  41. Wu M, Liu B (2003) Data hiding in image and video:part I - fundamental issues and solutions. IEEE Trans Image Process 12(6):685–695

    Article  Google Scholar 

  42. Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer dct-based reversible watermarking for images using companding technique. Proc SPIE 5306, Security, Steganography and Watermarking of Multimedia Contents, vol 6

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments that helped improve the original manuscript. This work was funded by the College of Graduate Studies and Research at the University of Sharjah under research grant number 15020403005-P for 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Rabie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabie, T., Kamel, I. High-capacity steganography: a global-adaptive-region discrete cosine transform approach. Multimed Tools Appl 76, 6473–6493 (2017). https://doi.org/10.1007/s11042-016-3301-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3301-x

Keywords

Navigation