Skip to main content
Log in

Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood–brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

TNF α:

Tumour necrosis factor alpha

ERK:

Extracellular regulated kinase

JNK-c:

Jun N-terminal kinase

AP-1:

Activator protein-1

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

HMGB1:

High mobility group box 1 protein

TRAF2:

TNF Receptor Associated Factor 2

JAK-STAT:

Janus kinases signal transducer and activator of transcription proteins

BBB:

Blood–brain barrier

NMDA:

N-Methyl-d-aspartic acid

BCL2:

B-cell lymphoma 2

COX-2:

Cyclooxygenase2

P-gp:

P-glycoprotein

AEDs:

Antiepileptic drugs

PGE2:

Prostaglandin E2

GABA:

Gamma-Aminobutyric acid

GPCR:

G-protein-coupled receptors

OS:

Oxidative stress

BDNF:

Brain-derived neurotrophic factor

ROS:

Reactive oxygen species

miRNA:

MicroRNAs

IL-1:

Interleukin-1

TBI:

Traumatic brain injury

References

  1. Foresti ML, Arisi GM, Shapiro LA (2011) Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res Rev 7(966):115–122. https://doi.org/10.1016/j.brainresrev.2010.09.002

    Article  CAS  Google Scholar 

  2. Rana A, Musto AE (2018) the role of inflammation in the development of epilepsy. J Neuroinflammation 5(1):1–2. https://doi.org/10.1186/s12974-018-1192-7

    Article  CAS  Google Scholar 

  3. Rehni AK, Singh TG (2013) Selenium induced anticonvulsant effect: a potential role of prostaglandin E1 receptor activation linked mechanism. J Trace Elem Med Biol 27(1):31–39. https://doi.org/10.1016/j.jtemb.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  4. Koepp MJ, Årstad E, Bankstahl JP, Dedeurwaerdere S, Friedman A, Potschka H, Ravizza T, Theodore WH, Baram TZ (2017) Neuroinflammation imaging markers for epileptogenesis. Epilepsia 58:11–19. https://doi.org/10.1111/epi.13778

    Article  PubMed  Google Scholar 

  5. Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD (2017) Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 14(1):1–7. https://doi.org/10.1186/s12974-016-0786-1

    Article  CAS  Google Scholar 

  6. Rehni AK, Singh TG (2011) Modulation of leukotriene D4 attenuates the development of seizures in mice. Prostaglandins Leukot Essent Fatty Acids 85(2):97–106. https://doi.org/10.1016/j.plefa.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  7. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15(1):1–2. https://doi.org/10.1038/nrneurol.2010.178

    Article  CAS  Google Scholar 

  8. Lee VL, Shaikh MF (2019) Inflammation: cause or consequence of epilepsy?. In: Epilepsy-Advances in Diagnosis and Therapy. IntechOpen.

  9. Choi J, Koh S (2008) Role of brain inflammation in epileptogenesis. Yonsei Med J 49(1):1–8. https://doi.org/10.3349/ymj.2008.49.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T (2011) IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 25(7):1281–1289. https://doi.org/10.1016/j.bbi.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  11. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15(8):459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  12. Ravizza T, Vezzani A (2018) Pharmacological targeting of brain inflammation in epilepsy: Therapeutic perspectives from experimental and clinical studies. Epilepsia Open 3:133–142. https://doi.org/10.1002/epi4.12242

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qian F, Tang FR (2016) Metabotropic glutamate receptors and interacting proteins in epileptogenesis. Curr Neuropharmacol 14(5):551–562. https://doi.org/10.2174/1570159X14666160331142228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zoicas I, Kornhuber J (2019) The role of metabotropic glutamate receptors in social behavior in rodents. Int J Mol Sci 20(6):1412. https://doi.org/10.3390/ijms20061412

    Article  CAS  PubMed Central  Google Scholar 

  15. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535. https://doi.org/10.1016/j.tins.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  16. Vezzani A (2014) Epilepsy and inflammation in the brain: overview and pathophysiology: epilepsy and inflammation in the brain. Epilepsy curr 14(2):3–7.

    Article  Google Scholar 

  17. Vezzani A (2020) Brain inflammation and seizures: evolving concepts and new findings in the last 2 decades. Epilepsy Curr 20(6):40S-S43.

    Article  Google Scholar 

  18. Sanz P, Garcia-Gimeno MA (2020) Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci 21(11):4096.

    Article  CAS  Google Scholar 

  19. Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B (2016) Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 8(10):4499

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Tao J, Zhang S, Lv X (2020) LncRNA MEG3 reduces hippocampal neuron apoptosis via the PI3K/AKT/mTOR pathway in a rat model of temporal lobe epilepsy. Neuropsychiatr Dis Treat 16:2519. https://doi.org/10.2147/NDT.S270614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hixson KM, Cogswell M, Brooks-Kayal AR, Russek SJ (2019) Transcriptomic analysis of the BDNF-induced JAK/STAT pathway in neurons: a window into epilepsy-associated gene expression. BioRxiv 1:577627. https://doi.org/10.1101/577627

    Article  CAS  Google Scholar 

  22. Tjalkens RB, Popichak KA, Kirkley KA (2017) Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Neurotoxicity. https://doi.org/10.1007/978-3-319-60189-2_8

    Article  Google Scholar 

  23. Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm. https://doi.org/10.1155/2014/901902

    Article  PubMed  PubMed Central  Google Scholar 

  24. Balosso S, Liu J, Bianchi ME, Vezzani A (2014) Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal 21(12):1726–1740. https://doi.org/10.1089/ars.2013.5349

    Article  CAS  PubMed  Google Scholar 

  25. Paudel YN, Shaikh M, Chakraborti A, Kumari Y, Aledo-Serrano Á, Aleksovska K, Alvim MK, Othman I (2018) HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front Neurosci 11(12):628. https://doi.org/10.3389/fnins.2018.00628

    Article  Google Scholar 

  26. Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R (2021) Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion. https://doi.org/10.1016/j.mito.2021.03.009

    Article  PubMed  Google Scholar 

  27. Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 9(10):1043. https://doi.org/10.3389/fimmu.2019.01043

    Article  CAS  Google Scholar 

  28. Simani L, Sadeghi M, Ryan F, Dehghani M, Niknazar S (2020) Elevated blood-based brain biomarker levels in patients with epileptic seizures: a systematic review and meta-analysis. ACS Chem Neurosci 11(24):4048–4059. https://doi.org/10.1021/acschemneuro.0c00492

    Article  CAS  PubMed  Google Scholar 

  29. Singh S, Singh TG (2020) Role of nuclear factor kappa B (NF-ΚB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol 18(10):918–935. https://doi.org/10.2174/1570159X18666200207120949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rehni AK, Bhateja P, Singh TG, Singh N (2008) Nuclear factor-κ-B inhibitor modulates the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. Behav Pharmacol 19(3):265–269. https://doi.org/10.1097/FBP.0b013e3282febcd9

    Article  CAS  PubMed  Google Scholar 

  31. Noe FM, Polascheck N, Frigerio F, Bankstahl M, Ravizza T, Marchini S, Beltrame L, Banderó CR, Löscher W, Vezzani A (2013) Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 1(59):183–193. https://doi.org/10.1016/j.nbd.2013.07.015

    Article  CAS  Google Scholar 

  32. Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, Bertollini C, Limatola C, Aronica E, Vezzani A, Palma E (2015) GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 1(82):311–320. https://doi.org/10.1016/j.nbd.2015.07.003

    Article  CAS  Google Scholar 

  33. Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 11(6):10248. https://doi.org/10.15252/emmm.201810248

    Article  CAS  Google Scholar 

  34. Wu X, Liao Z, Wang K, Hua W, Liu X, Song Y, Zhang Y, Yang S, Yang C (2019) Targeting the IL-1β/IL-1Ra pathways for the aggregation of human islet amyloid polypeptide in an ex vivo organ culture system of the intervertebral disc. Exp Mol Med 51(9):1–6. https://doi.org/10.1038/s12276-019-0310-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, Fan X, Yu FS (2016) Targeting imbalance between IL-1β and IL-1 receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas. The Am J Pathol. 186(6):1466–1480. https://doi.org/10.1016/j.ajpath.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  36. Dyomina AV, Zubareva OE, Smolensky IV, Vasilev DS, Zakharova MV, Kovalenko AA, Schwarz AP, Ischenko AM, Zaitsev AV (2020) Anakinra reduces epileptogenesis, provides neuroprotection, and attenuates behavioral impairments in rats in the lithium-pilocarpine model of epilepsy. Pharmaceuticals 13(11):340. https://doi.org/10.3390/ph13110340

    Article  CAS  PubMed Central  Google Scholar 

  37. Singh S, Singh TG, Rehni AK (2020) An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS Neuroll Disorders-Drug Targets 19(10):750–779. https://doi.org/10.2174/1871527319666200910153827

    Article  CAS  Google Scholar 

  38. Dey A, Kang X, Qiu J, Du Y, Jiang J (2016) Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol Sci 37(6):463–484. https://doi.org/10.1016/j.tips.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma VK, Singh TG, Mehta V (2021) Stressed mitochondria: a target to intrude Alzheimer’s disease. Mitochondrion. https://doi.org/10.1016/j.mito.2021.04.004

    Article  PubMed  Google Scholar 

  40. Stępień KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ (2012) The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Drugs Pharmacol Rep 64(5):1011–1019. https://doi.org/10.1016/S1734-1140(12)70900-3

    Article  PubMed  Google Scholar 

  41. Khan H, Gupta A, Singh TG, Kaur A (2021) Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep. https://doi.org/10.1007/s43440-021-00258-8

    Article  PubMed  Google Scholar 

  42. Rawat C, Kukal S, Dahiya UR, Kukreti R (2019) Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 16(1):1–5. https://doi.org/10.1186/s12974-019-1592-3

    Article  CAS  Google Scholar 

  43. Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, Dingledine R (2014) Cyclooxygenase-2 in epilepsy. Epilepsia 55(1):17–25. https://doi.org/10.1111/epi.12461

    Article  CAS  PubMed  Google Scholar 

  44. Potschka H (2010) Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 51(8):1333–1347. https://doi.org/10.1111/j.1528-1167.2010.02585.x

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Cai Z, Ke Z (2017) Antineuroinflammation of minocycline in stroke. Neurologist 22(4):120–126. https://doi.org/10.1097/NRL.0000000000000136

    Article  PubMed  Google Scholar 

  46. Montesinos J, Alfonso-Loeches S, Guerri C (2016) Impact of the innate immune response in the actions of ethanol on the central nervous system. Alcoholism 40(11):2260–2270. https://doi.org/10.1111/acer.13208

    Article  CAS  PubMed  Google Scholar 

  47. Yuan X, Fu Z, Ji P, Guo L, Al-Ghamdy AO, Alkandiri A, Habotta OA, Moneim AE, Kassab RB (2020) Selenium nanoparticles pretreatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. Int J Nanomed 15:6339. https://doi.org/10.2147/IJN.S259134

    Article  CAS  Google Scholar 

  48. De Rubeis S, Fernández E, Buzzi A, Di Marino D, Bagni C (2012) Molecular and cellular aspects of mental retardation in the Fragile X syndrome: from gene mutation/s to spine dysmorphogenesis. Synaptic Plasticity. https://doi.org/10.1007/978-3-7091-0932-8_23

    Article  Google Scholar 

  49. Singh R, Rao HK, Singh TG (2020) Neuropathic pain in diabetes mellitus: challenges and future trends. Obes Med 18:100215. https://doi.org/10.1016/j.obmed.2020.100215

    Article  Google Scholar 

  50. Milatovic D, Montine TJ, Aschner M (2011) Prostanoid signaling: dual role for prostaglandin E2 in neurotoxicity. Neurotoxicology 32(3):312–319. https://doi.org/10.1016/j.neuro.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Vliet EA, Zibell G, Pekcec A, Schlichtiger J, Edelbroek PM, Holtman L, Aronica E, Gorter JA, Potschka H (2010) COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 58(2):404–412. https://doi.org/10.1016/j.neuropharm.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  52. Katan M, Cockcroft S (2020) Phosphatidylinositol (4, 5) bisphosphate: diverse functions at the plasma membrane. Essays Biochem 64(3):513–531. https://doi.org/10.1042/EBC20200041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yousuf MS, Samtleben S, Lamothe SM, Friedman TN, Catuneanu A, Thorburn K, Desai M, Tenorio G, Schenk GJ, Ballanyi K, Kurata HT (2020) Endoplasmic reticulum stress in the dorsal root ganglia regulates large-conductance potassium channels and contributes to pain in a model of multiple sclerosis. FASEB J 34(9):12577–12598. https://doi.org/10.1096/fj.202001163R

    Article  CAS  PubMed  Google Scholar 

  54. Wei LL, Shen YD, Zhang YC, Hu XY, Lu PL, Wang L, Chen W (2010) Roles of the prostaglandin E 2 receptors EP subtypes in Alzheimer’s disease. Neurosci Bull 26(1):77–84. https://doi.org/10.1007/s12264-010-0703-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rawat C, Kutum R, Kukal S, Srivastava A, Dahiya UR, Kushwaha S, Sharma S, Dash D, Saso L, Srivastava AK, Kukreti R (2020) Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci Rep 10(1):1–4. https://doi.org/10.1038/s41598-020-59259-x

    Article  CAS  Google Scholar 

  56. Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D (2014) Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol 75(6):864–875. https://doi.org/10.1002/ana.24147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, Vezzani A (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood–brain barrier dysfunction. Neurobiol Dis 1(78):115–125. https://doi.org/10.1016/j.nbd.2015.02.029

    Article  CAS  Google Scholar 

  58. Kaminska B, Kocyk M, Kijewska M (2013) TGF beta signaling and its role in glioma pathogenesis. Glioma Signaling. https://doi.org/10.1007/978-94-007-4719-7_9

    Article  Google Scholar 

  59. Van Vliet EA, Aronica E, Gorter JA (2015) Blood–brain barrier dysfunction, seizures and epilepsy. InSeminars in Cell & Developmental Biology 1 (Vol. 38, pp. 26–34). Academic Press. https://doi.org/10.1016/j.semcdb.2014.10.003.

  60. Um JW (2017) Roles of glial cells in sculpting inhibitory synapses and neural circuits. Front Mol Neurosci 13(10):381. https://doi.org/10.3389/fnmol.2017.00381

    Article  CAS  Google Scholar 

  61. Baldwin KT, Eroglu C (2017) Molecular mechanisms of astrocyte-induced synaptogenesis. Curr Opin Neurobiol 45:113–120. https://doi.org/10.1016/j.conb.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Naegele JR (2015) Blocking Astrocyte Transformation at the Dysfunctional Blood Brain Barrier: Seizure Suppression by Losartan. Epilepsy Curr 15(2):87–89.

    Article  Google Scholar 

  63. Diniz LP, Matias IC, Garcia MN, Gomes FC (2014) Astrocytic control of neural circuit formation: highlights on TGF-beta signaling. Neurochem Int 1(78):18–27. https://doi.org/10.1016/j.neuint.2014.07.008

    Article  CAS  Google Scholar 

  64. Kang X, Qiu J, Li Q, Bell KA, Du Y, Lee JY, Hao J, Jiang J (2017) Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci Rep 7(1):1–4. https://doi.org/10.1038/s41598-017-09528-z

    Article  CAS  Google Scholar 

  65. Rehni AK, Singh TG (2012) Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice. Cytokine 60(1):83–89. https://doi.org/10.1016/j.cyto.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  66. Jiang J, Quan Y, Ganesh T, Pouliot WA, Dudek FE, Dingledine R (2013) Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci 110(9):3591–3596. https://doi.org/10.1073/pnas.1218498110

    Article  PubMed  PubMed Central  Google Scholar 

  67. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6(10):26317. https://doi.org/10.1371/journal.pone.0026317

    Article  CAS  Google Scholar 

  68. Nagib MM, Yu Y, Jiang J (2020) Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol Ther 1(209):107504. https://doi.org/10.1016/j.pharmthera.2020.107504

    Article  CAS  Google Scholar 

  69. Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Abdel-Daim MM (2021) Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 140:111729. https://doi.org/10.1016/j.biopha.2021.111729

    Article  CAS  PubMed  Google Scholar 

  70. Sharma VK, Singh TG (2020) Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer’s disease. Life Sci. https://doi.org/10.1016/j.lfs.2020.118401

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sharma V, Kaur A, Singh TG (2020) Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother 129:110373. https://doi.org/10.1016/j.biopha.2020.110373

    Article  CAS  Google Scholar 

  72. Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, Gressens P, Buonocore G, Balduini W (2016) Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and mi R-34a/silent information regulator 1 pathway. J Pineal Res 61(3):370–380. https://doi.org/10.1111/jpi.12354

    Article  CAS  PubMed  Google Scholar 

  73. Ethemoglu MS, Seker FB, Akkaya H, Kilic E, Aslan I, Erdogan CS, Yilmaz B (2017) Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience 15(357):12–19. https://doi.org/10.1016/j.neuroscience.2017.05.026

    Article  CAS  Google Scholar 

  74. Musto AE, Rosencrans RF, Walker CP, Bhattacharjee S, Raulji CM, Belayev L, Fang Z, Gordon WC, Bazan NG (2016) Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism. Sci Rep 6(1):1–6. https://doi.org/10.1038/srep30298

    Article  CAS  Google Scholar 

  75. Khan H, Tiwari P, Kaur A, Singh TG (2021) Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02387-w

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lu H, Wang B, Cui N, Zhang Y (2018) Artesunate suppresses oxidative and inflammatory processes by activating Nrf2 and ROS-dependent p38 MAPK and protects against cerebral ischemia-reperfusion injury. Mol Med 17(5):6639–6646. https://doi.org/10.3892/mmr.2018.8666

    Article  CAS  Google Scholar 

  77. Mannan A, Garg N, Singh TG, Kang HK (2021) Peroxisome proliferator-activated receptor-gamma (PPAR-ɣ): molecular effects and its importance as a novel therapeutic target for cerebral ischemic injury. Neurochem Res. https://doi.org/10.1007/s11064-021-03402-1

    Article  PubMed  Google Scholar 

  78. Madreiter-Sokolowski CT, Waldeck-Weiermair M, Bourguignon MP, Villeneuve N, Gottschalk B, Klec C, Stryeck S, Radulovic S, Parichatikanond W, Frank S, Madl T (2019) Enhanced inter-compartmental Ca2+ flux modulates mitochondrial metabolism and apoptotic threshold during aging. Redox Biol 1(20):458–466. https://doi.org/10.1016/j.redox.2018.11.003

    Article  CAS  Google Scholar 

  79. Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J (2018) PGC-1α protects RPE cells of the aging retina against oxidative stress-induced degeneration through the regulation of senescence and mitochondrial quality control: the significance for AMD pathogenesis. Int J Mol Sci 19(8):2317. https://doi.org/10.3390/ijms19082317

    Article  CAS  PubMed Central  Google Scholar 

  80. Hannan M, Dash R, Sohag AA, Haque M, Moon IS (2020) Neuroprotection against oxidative stress: phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system. Front Mol Neurosci 2(13):116. https://doi.org/10.3389/fnmol.2020.00116

    Article  CAS  Google Scholar 

  81. Ahmed SM, Luo L, Namani A, Wang XJ (1863) Tang X (2017) Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis Bba-Mol Basis Dis 2:585–597. https://doi.org/10.1016/j.bbadis.2016.11.005

    Article  CAS  Google Scholar 

  82. Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J (2020) Nuclear factor kappa B signaling complexes in acute inflammation. Antioxid Redox Signal 33(3):145–165. https://doi.org/10.1089/ars.2019.7975

    Article  CAS  PubMed  Google Scholar 

  83. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233(2):830–848. https://doi.org/10.1002/jcp.25778

    Article  CAS  PubMed  Google Scholar 

  84. Thawkar BS, Kaur G (2019) Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J Neuroimmunol 15(326):62–74. https://doi.org/10.1016/j.jneuroim.2018.11.010

    Article  CAS  Google Scholar 

  85. Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, Rodgers BD, Jiang Q, Dodson MV, Du M (2015) Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes 39:967–976. https://doi.org/10.1038/ijo.2015.23

    Article  CAS  Google Scholar 

  86. Xu L, Botchway BO, Zhang S, Zhou J, Liu X (2018) Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury. Front Neurosci 4(12):690. https://doi.org/10.3389/fnins.2018.00690

    Article  Google Scholar 

  87. Rehni AK, Singh TG, Singh N, Arora S (2010) Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine H1 receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 381(1):11–19. https://doi.org/10.1007/s00210-009-0476-y

    Article  CAS  PubMed  Google Scholar 

  88. Thapa K, Khan H, Sharma U, Grewal AK, Singh TG (2020) Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci. https://doi.org/10.1016/j.lfs.2020.118975

    Article  PubMed  Google Scholar 

  89. Gaikwad S, Agrawal-Rajput R (2015) Lipopolysaccharide from Rhodobacter sphaeroides attenuates microglia-mediated inflammation and phagocytosis and directs regulatory T cell response. J Inflamm Res 17:2015. https://doi.org/10.1155/2015/361326

    Article  CAS  Google Scholar 

  90. Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF (2015) GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol 1(273):11–23. https://doi.org/10.1016/j.expneurol.2015.07.028

    Article  CAS  Google Scholar 

  91. Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM (2020) Going the extra (synaptic) mile: excitotoxicity as the road toward neurodegenerative diseases. Front Cell Neurosci 24(14):90. https://doi.org/10.3389/fncel.2020.00090

    Article  CAS  Google Scholar 

  92. Cho YJ, Kim H, Kim WJ, Chung S, Kim YH, Cho I, Lee BI, Heo K (2017) Trafficking patterns of NMDA and GABAA receptors in a Mg2+-free cultured hippocampal neuron model of status epilepticus. Epilepsy Res 1(136):143–148. https://doi.org/10.1016/j.eplepsyres.2017.08.003

    Article  CAS  Google Scholar 

  93. Sasabe J, Suzuki M, Imanishi N, Aiso S (2014) Activity of D-amino acid oxidase is widespread in the human central nervous system. Front Mol Neurosci 10(6):14. https://doi.org/10.3389/fncel.2018.00052

    Article  CAS  Google Scholar 

  94. Foresti ML, Arisi GM, Shapiro LA (2011) Role of glia in epilepsy-associated neuropathology, neuroinflammation and neurogenesis. Brain Res 66(1–2):115–122. https://doi.org/10.1016/j.brainresrev.2010.09.002

    Article  CAS  Google Scholar 

  95. Alsharafi WA, Xiao B, Abuhamed MM, Luo Z (2015) miRNAs: biological and clinical determinants in epilepsy. Front Mol Neurosci 13(8):59. https://doi.org/10.3389/fnmol.2015.00059

    Article  CAS  Google Scholar 

  96. Wang J, Zhao J (2021) MicroRNA dysregulation in epilepsy: from pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Front Mol Neurosci 12(14):35. https://doi.org/10.1080/17460441.2020.1746266

    Article  CAS  Google Scholar 

  97. Nakamura M, Kanda T, Sasaki R, Haga Y, Jiang X, Wu S, Nakamoto S, Yokosuka O (2015) MicroRNA-122 inhibits the production of inflammatory cytokines by targeting the PKR activator PACT in human hepatic stellate cells. PLoS ONE 10(12):e0144295. https://doi.org/10.1371/journal.pone.0144295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mahesh G, Biswas R (2019) MicroRNA-155: a master regulator of inflammation. J Interferon Cytokine Res 39(6):321–330. https://doi.org/10.1089/jir.2018.0155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lai YC, Muscal E, Wells E, Shukla N, Eschbach K, Hyeong Lee K, Kaliakatsos M, Desai N, Wickström R, Viri M, Freri E (2020) Anakinra usage in febrile infection related epilepsy syndrome: an international cohort. Ann Clin Transl Neurol 7:2467–2474. https://doi.org/10.1002/acn3.51229

    Article  PubMed  PubMed Central  Google Scholar 

  100. Radu BM, Epureanu FB, Radu M, Fabene PF, Bertini G (2017) Nonsteroidal anti-inflammatory drugs in clinical and experimental epilepsy. Epilepsy Res 131:15–27. https://doi.org/10.1016/j.eplepsyres.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  101. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J, Vezzani A (2011) Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurother 8:304–315. https://doi.org/10.1007/s13311-011-0039-z

    Article  CAS  Google Scholar 

  102. Nasr SMB, Moghimi A, Mohammad-Zadeh M, Shamsizadeh A, Noorbakhsh SM (2013) The effect of minocycline on seizures induced by amygdala kindling in rats. Seizure 22:670–674. https://doi.org/10.1016/j.seizure.2013.05.005

    Article  Google Scholar 

  103. Wang DD, Englot DJ, Garcia PA, Lawton MT, Young WL (2012) Minocycline-and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav 24:314–318. https://doi.org/10.1016/j.yebeh.2012.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou P, Qian L, Chou T, Iadecola C (2008) Neuroprotection by PGE2 receptor EP1 inhibition involves the PTEN/AKT pathway. Neurobiol Dis 29:543–551. https://doi.org/10.1016/j.nbd.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  105. Fischborn SV, Soerensen J, Potschka H (2010) Targeting the prostaglandin E2 EP1 receptor and cyclooxygenase-2 in the amygdala kindling model in mice. Epilepsy Res 91:57–65. https://doi.org/10.1016/j.eplepsyres.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  106. Löscher W, Potschka H, Sisodiya SM, Vezzani A (2020) Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 72:606–638. https://doi.org/10.1124/pr.120.019539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bhuyan P, Patel M (2014) StEPing “EP2” to prevent status epilepticus-induced mortality and inflammation: StEPing “EP2” to prevent status epilepticus. Epilepsy Curr 14:35–37.

    Article  Google Scholar 

  108. Shetty AK (2011) Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther 131:269–286. https://doi.org/10.1016/j.pharmthera.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK (2015) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5:1–19. https://doi.org/10.1038/srep17807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Conceived and designed the experiments: TGS. Analyzed the data: SS, TGS Wrote the manuscript: SV, SS Editing of the Manuscript: TGS critically reviewed the article: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Consent to participate

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, S., Singh, S. & Singh, T.G. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 49, 1437–1452 (2022). https://doi.org/10.1007/s11033-021-06896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06896-8

Keywords

Navigation