Skip to main content

Advertisement

Log in

Sirtuin Acetylation and Deacetylation: a Complex Paradigm in Neurodegenerative Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sirtuins are the class III of histone deacetylases that depend on nicotinamide adenine dinucleotide for their activity. Sirtuins can influence the progression of neurodegenerative disorders by switching between deacetylation and acetylation processes. Histone acetylation occurs when acetyl groups are added to lysine residues on the N-terminal part of histone proteins. Deacetylation, on the other hand, results in the removal of acetyl groups. Pharmacological modulation of sirtuin activity has been shown to influence various neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, stroke, and amyotrophic lateral sclerosis. In this review, mechanistic perspective of sirtuins has been discussed in anti-inflammatory, antiapoptotic, and neuroprotective effects in various disorders. We have discussed the structure, neurobiology, and physiology of sirtuins in neurodegenerative disease. Recent preclinical and clinical studies and their outcome have also been elucidated. The aim of this review is to fill in the gaps in our understanding of sirtuins’ role in histone acetylation and deacetylation in all neurodegenerative diseases. Here, we emphasized on reviewing all the studies carried out in various labs depicting the role of sirtuin modulators in neuroprotection and highlighted the ideas that can be considered for future perspectives. Taken together, sirtuins may serve as a promising therapeutic target for the treatment of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

NAD+:

nicotinamide adenine dinucleotide

NDD:

neurodegenerative disease

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

HD:

Huntington’s disease

ALS:

amyotrophic lateral sclerosis

NMN:

nicotinamide mononucleotide

NAMPT:

nicotinamide phosphoribosyltransferase

NMNAT:

nicotinamide/nicotinic acid mononucleotide adenylyltransferase

ETC:

electron transport chain

eNOS:

endothelial nitric oxide synthase

VEGF:

vascular endothelial growth factor

References

  1. Vassilopoulos A, Fritz KS, Petersen DR, Gius D (2011) The human sirtuin family: evolutionary divergences and functions. Hum Genom 5:1–12. https://doi.org/10.1186/1479-7364-5-5-485

    Article  Google Scholar 

  2. Cantó C, Auwerx J (2012) Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacol Rev 64:166–187. https://doi.org/10.1124/pr.110.003905

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, He J, Liao M, Hu M, Li W, Ouyang H, Wang X, Ye T et al (2019) An overview of Sirtuins as potential therapeutic target: structure, function and modulators. Eur J Med Chem 161:48–77. https://doi.org/10.1016/j.ejmech.2018.10.028

    Article  CAS  PubMed  Google Scholar 

  4. Han SH (2009) Potential role of sirtuin as a therapeutic target for neurodegenerative diseases. J Clin Neurol 5:120–125. https://doi.org/10.3988/jcn.2009.5.3.120

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gomes P, Leal H, Mendes AF, Reis F, Cavadas C (2019) Dichotomous sirtuins: implications for drug discovery in neurodegenerative and cardiometabolic diseases. Trends Pharmacol Sci 40:1021–1039. https://doi.org/10.1016/j.tips.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  6. Herskovits AZ, Guarente L (2013) Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 23:746–758. https://doi.org/10.1038/cr.2013.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walker MA, Tian R (2018) NAD(H) in mitochondrial energy transduction: implications for health and disease. Curr Opin Physiol 3:101–109. https://doi.org/10.1016/j.cophys.2018.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Connell NJ, Houtkooper RH, Schrauwen P (2019) NAD+ metabolism as a target for metabolic health: have we found the silver bullet? Diabetologia 62:888–899. https://doi.org/10.1007/s00125-019-4831-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Canto C, Menzies KJ, Auwerx J (2015) NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sosnowska B, Mazidi M, Penson P, Gluba-Brzózka A, Rysz J, Banach M (2017) The sirtuin family members SIRT1, SIRT3 and SIRT6: their role in vascular biology and atherogenesis. Atherosclerosis 265:275–282. https://doi.org/10.1016/j.atherosclerosis.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  11. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA et al (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92:1479–1514. https://doi.org/10.1152/physrev.00022.2011

    Article  CAS  PubMed  Google Scholar 

  12. Zschoernig B, Mahlknecht U (2008) SIRTUIN 1: regulating the regulator. Biochem Biophys Res Commun 376:251–255. https://doi.org/10.1016/j.bbrc.2008.08.137

    Article  CAS  PubMed  Google Scholar 

  13. Gillum MP, Erion DM, Shulman GI (2011) Sirtuin-1 regulation of mammalian metabolism. Trends Mol Med 17:8–13. https://doi.org/10.1016/j.molmed.2010.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeng L, Chen R, Liang F, Tsuchiya H, Murai H, Nakahashi T, Iwai K, Takahashi T et al (2009) Silent information regulator, Sirtuin 1, and age-related diseases. Geriatr Gerontol Int 9:7–15. https://doi.org/10.1111/j.1447-0594.2008.00504.x

    Article  PubMed  Google Scholar 

  15. Villalba JM, Alcaín FJ (2012) Sirtuin activators and inhibitors. Biofactors 38:349–359. https://doi.org/10.1002/biof.1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langley B, Sauve A (2013) Sirtuin deacetylases as therapeutic targets in the nervous system. Neurotherapeutics 10:605–620. https://doi.org/10.1007/s13311-013-0214-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gomes P, Outeiro TF, Cavadas C (2015) Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci 36:756–768. https://doi.org/10.1016/j.tips.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  18. Pillai VB, Sundaresan NR, Jeevanandam V, Gupta MP (2010) Mitochondrial SIRT3 and heart disease. Cardiovasc Res 88:250–256. https://doi.org/10.1093/cvr/cvq250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scher MB, Vaquero A, Reinberg D (2007) SIRT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21:920–928. https://doi.org/10.1101/gad.1527307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anekonda TS, Reddy PH (2006) Neuronal protection by sirtuins in Alzheimer’s disease. J Neurochem 96:305–313. https://doi.org/10.1111/j.1471-4159.2005.03492.x

    Article  CAS  PubMed  Google Scholar 

  21. Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, Maechler P, Verdin E (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282:33583–33592. https://doi.org/10.1074/jbc.m705488200

    Article  CAS  PubMed  Google Scholar 

  22. Huang G, Zhu G (2018) Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. Onco Targets Ther 11:3395. https://doi.org/10.2147/OTT.S157724

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen YR, Fang SR, Fu YC, Zhou XH, Xu MY, Xu WC (2010) Calorie restriction on insulin resistance and expression of SIRT1 and SIRT4 in rats. Biochem Cell Biol 88:715–722. https://doi.org/10.1139/o10-010

    Article  CAS  PubMed  Google Scholar 

  24. Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, Guo A, Gut P et al (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18:920–933. https://doi.org/10.1016/j.cmet.2013.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajendran R, Garva R, Krstic-Demonacos M (2011) Demonacos C (2011) Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011:1–17. https://doi.org/10.1155/2011/368276

    Article  CAS  Google Scholar 

  26. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Sci 332:1443–1446. https://doi.org/10.1126/science.1202723

    Article  CAS  Google Scholar 

  27. Pan PW, Feldman JL, Devries MK, Dong A, Edwards AM, Denu JM (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286:14575–14587. https://doi.org/10.1074/jbc.m111.218990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontol 18:447–476. https://doi.org/10.1007/s10522-017-9685-9

    Article  CAS  Google Scholar 

  29. Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins—novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7:841–853. https://doi.org/10.1038/nrd2665

    Article  CAS  PubMed  Google Scholar 

  30. Rice CM, Sun M, Kemp K, Gray E, Wilkins A, Scolding NJ (2012) Mitochondrial sirtuins—a new therapeutic target for repair and protection in multiple sclerosis. Eur J Neurosci 35:1887–1893. https://doi.org/10.1111/j.1460-9568.2012.08150.x

    Article  CAS  PubMed  Google Scholar 

  31. Elliott PJ, Jirousek M (2008) Sirtuins: novel targets for metabolic disease. Curr Opin Investig Drugs 9:371–378

    CAS  PubMed  Google Scholar 

  32. Shih J, Donmez G (2013) Mitochondrial sirtuins as therapeutic targets for age-related disorders. Genes Cancer 4:91–96. https://doi.org/10.1177/1947601912474931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakagawa T, Guarente L (2011) Sirtuins at a glance. J Cell Sci 124:833–838. https://doi.org/10.1242/jcs.081067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taylor DM, Maxwell MM, Luthi-Carter R, Kazantsev AG (2008) Biological and potential therapeutic roles of sirtuin deacetylases. Cell Mol Life Sci 65:4000–4018. https://doi.org/10.1007/s00018-008-8357-y

    Article  CAS  PubMed  Google Scholar 

  35. Ajami M, Pazoki-Toroudi H, Amani H, Nabavi SF, Braidy N, Vacca RA, Atanasov AG, Mocan A et al (2017) Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neurosci Biobehav Rev 73:39–47. https://doi.org/10.1016/j.neubiorev.2016.11.022

    Article  CAS  PubMed  Google Scholar 

  36. Machado De Oliveira R, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol 3:82. https://doi.org/10.3389/fphar.2012.00082

    Article  CAS  Google Scholar 

  37. Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB (2017) Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res 42:876–890. https://doi.org/10.1007/s11064-016-2110-y

    Article  CAS  PubMed  Google Scholar 

  38. Lalla R, Donmez G (2013) The role of sirtuins in Alzheimer’s disease. Front Aging Neurosci 5:16. https://doi.org/10.3389/fnagi.2013.00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silberman DM (2018) Metabolism, neurodegeneration and epigenetics: emerging role of Sirtuins. Neural Regen Res 13:417. https://doi.org/10.4103/1673-5374.228719

    Article  PubMed  PubMed Central  Google Scholar 

  40. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Ann Rev Pathol: Mech Dis 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250

    Article  CAS  Google Scholar 

  41. Min SW, Sohn PD, Cho SH, Swanson RA, Gan L (2013) Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front Aging Neurosci 5:53. https://doi.org/10.3389/fnagi.2013.00053

    Article  PubMed  PubMed Central  Google Scholar 

  42. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:018713. https://doi.org/10.1101/cshperspect.a018713

    Article  Google Scholar 

  43. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179. https://doi.org/10.1038/sj.emboj.7601758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 285(12):9100–9113. https://doi.org/10.1074/jbc.M109.060061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jang JH, Surh YJ (2003) Protective effect of resveratrol on β-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34(8):1100–1110. https://doi.org/10.1016/s0891-5849(03)00062-5

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Zhang Y, Zhang H, Xu S, Zhao H, Liu X (2020) Aβ-induced damage memory in hCMEC/D3 cells mediated by Sirtuin-1. Int J Mol Sci 21:8226. https://doi.org/10.3390/ijms21218226

    Article  CAS  PubMed Central  Google Scholar 

  47. Lee J, Kim Y, Liu T, Hwang YJ, Hyeon SJ, Im H, Lee K, Alvarez VE et al (2018) SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell 17:12679. https://doi.org/10.1111/acel.12679

    Article  CAS  Google Scholar 

  48. Kaluski S, Portillo M, Besnard A, Stein D, Einav M, Zhong L, Ueberham U, Arendt T et al (2017) Neuroprotective functions for the histone deacetylase SIRT6. Cell Rep 18(13):3052–3062. https://doi.org/10.1016/j.celrep.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin J, Han PC, Caselli R, Beach T, Serrano G, Reiman E, Shi J (2015) Sirtuin 3 is down-regulated in Apolipoprotein E4 carriers with Alzheimer’s disease. Am Acad Neurol 84:P5. 011

    Google Scholar 

  50. Ansari A, Rahman MS, Saha SK, Saikot FK, Deep A, Kim KH (2017) Function of the SIRT 3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 16:4–16. https://doi.org/10.1111/acel.12538

    Article  CAS  PubMed  Google Scholar 

  51. Tang BL (2017) Sirtuins as modifiers of Parkinson’s disease pathology. J Neurosci Res 95:930–942. https://doi.org/10.1002/jnr.23806

    Article  CAS  PubMed  Google Scholar 

  52. Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 32:124–132. https://doi.org/10.1523/jneurosci.3442-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yalcin G (2018) Sirtuins and neurodegeneration. J Neurol Neuromed 3:13–20

    Article  Google Scholar 

  54. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM et al (2007) Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317(5837):516–519. https://doi.org/10.1126/science.1143780

    Article  CAS  PubMed  Google Scholar 

  55. Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A (2020) Emerging role of Sirtuin 2 in Parkinson’s disease. Front Aging Neurosci 11:372. https://doi.org/10.3389/fnagi.2019.00372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blanchet J, Longpré F, Bureau G, Morissette M, DiPaolo T, Bronchti G, Martinoli MG (2008) Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1243–1250. https://doi.org/10.1016/j.pnpbp.2008.03.024

    Article  CAS  Google Scholar 

  57. Koike T, Suzuki K, Kawahata T (2012) SIRT2 (Sirtuin2)—an emerging regulator of neuronal degeneration. Neurodegeneration 1. https://doi.org/10.5772/34722

  58. Chen C, Xia B, Tang L, Wu W, Tang J, Liang Y, Yang H, Zhang Z et al (2019) Echinacoside protects against MPTP/MPP+-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metab Brain Dis 34:203–212. https://doi.org/10.1007/s11011-018-0330-3

    Article  CAS  PubMed  Google Scholar 

  59. Spires-Jones TL, Fox LM, Rozkalne A, Pitstick R, Carlson GA, Kazantsev AG (2012) Inhibition of sirtuin 2 with sulfobenzoic acid derivative AK1 is non-toxic and potentially neuroprotective in a mouse model of frontotemporal dementia. Front Pharmacol 3:42. https://doi.org/10.3389/fphar.2012.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C et al (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by α-synuclein or amyloid-β (1-42) peptide. J Neurochem 110:1445–1456. https://doi.org/10.1111/j.1471-4159.2009.06228.x

    Article  CAS  PubMed  Google Scholar 

  61. Zhang JY, Deng YN, Zhang M, Su H, Qu QM (2016) SIRT3 acts as a neuroprotective agent in rotenone-induced Parkinson cell model. Neurochem Res 41:1761–1773. https://doi.org/10.1007/s11064-016-1892-2

    Article  CAS  PubMed  Google Scholar 

  62. Duan W (2013) Targeting sirtuin-1 in Huntington’s disease: rationale and current status. CNS Drugs 27:345–352. https://doi.org/10.1007/s40263-013-0055-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Naia L, Rego AC (2015) Sirtuins: double players in Huntington’s disease. Biochim Biophys Acta (BBA)-Mol Basis Dis 1852:2183–2194. https://doi.org/10.1016/j.bbadis.2015.07.003

    Article  CAS  Google Scholar 

  64. Konsoula Z, Barile FA (2012) Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods 66:215–220. https://doi.org/10.1016/j.vascn.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  65. Jiang M, Zheng J, Peng Q, Hou Z, Zhang J, Mori S, Ellis JL, Vlasuk GP et al (2014) Sirtuin 1 activator SRT 2104 protects Huntington's disease mice. Ann Clin Transl Neurol 1:1047–1052. https://doi.org/10.1002/acn3.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Donmez G (2012) The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 33:494–501. https://doi.org/10.1016/j.tips.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  67. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69. https://doi.org/10.1016/j.cell.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  68. Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metab 4:349–362. https://doi.org/10.1016/j.cmet.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  69. Outeiro TF, Marques O, Kazantsev A (2008) Therapeutic role of sirtuins in neurodegenerative disease. Biochimi Biophys Acta (BBA)-Mol Basis Dis 1782:363–369. https://doi.org/10.1016/j.bbadis.2008.02.010

    Article  CAS  Google Scholar 

  70. Quinti L, Casale M, Moniot S, Pais TF, Van Kanegan MJ, Kaltenbach LS, Pallos J, Lim RG et al (2016) SIRT2-and NRF2-targeting thiazole-containing compound with therapeutic activity in Huntington’s disease models. Cell Chem Biol 23:849–861. https://doi.org/10.1016/j.chembiol.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  71. Süssmuth SD, Haider S, Landwehrmeyer GB, Farmer R, Frost C, Tripepi G, Andersen CA, Di Bacco M et al (2015) An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol 79:465–476. https://doi.org/10.1111/bcp.12512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF (2010) Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol 225:74–84. https://doi.org/10.1016/j.expneurol.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  73. Kumar P, Padi SSV, Naidu PS, Kumar A (2006) Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioural changes: possible neuroprotective mechanisms. Behav Pharmacol 17:485–492. https://doi.org/10.1097/00008877-200609000-00014

    Article  CAS  PubMed  Google Scholar 

  74. Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q et al (2012) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158. https://doi.org/10.1038/nm.2558

    Article  CAS  Google Scholar 

  75. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR, Bordone L et al (2012) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18:159–165. https://doi.org/10.1038/nm.2559

    Article  CAS  Google Scholar 

  76. Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet 17:3767–3775. https://doi.org/10.1093/hmg/ddn273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Robbins NM, Swanson RA (2014) Opposing effects of glucose on stroke and reperfusion injury: acidosis, oxidative stress, and energy metabolism. Stroke 45:1881–1886. https://doi.org/10.1161/strokeaha.114.004889

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497–500

    Article  CAS  Google Scholar 

  79. Schweizer S, Meisel A, Märschenz S (2013) Epigenetic mechanisms in cerebral ischemia. J Cereb Blood Flow Metab 33:1335–1346. https://doi.org/10.1134/S1990747819040093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gibson CL, Murphy SP (2010) Benefits of histone deacetylase inhibitors for acute brain injury: a systematic review of animal studies. J Neurochem 115:806–813. https://doi.org/10.1111/j.1471-4159.2010.06993.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baltan S, Morrison RS, Murphy SP (2013) Novel protective effects of histone deacetylase inhibition on stroke and white matter ischemic injury. Neurotherapeutics 10:798–807. https://doi.org/10.1007/s13311-013-0201-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bassett SA, Barnett MP (2014) The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 6:4273–4301. https://doi.org/10.3390/nu6104273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Verma R, Ritzel RM, Crapser J, Friedler BD, McCullough LD (2019) Evaluation of the neuroprotective effect of Sirt3 in experimental stroke. Transl Stroke Res 10:57–66. https://doi.org/10.1007/s12975-017-0603-x

    Article  CAS  PubMed  Google Scholar 

  84. Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta (BBA)-Proteins and. Proteomics 1864:1372–1401. https://doi.org/10.1016/j.bbapap.2016.06.007

    Article  CAS  Google Scholar 

  85. Hernández-Jiménez M, Hurtado O, Cuartero MI, Ballesteros I, Moraga A, Pradillo JM, McBurney MW, Lizasoain I et al (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44:2333–2337. https://doi.org/10.1161/strokeaha.113.001715

    Article  PubMed  Google Scholar 

  86. Zhang W, Wei R, Zhang L, Tan Y, Qian C (2017) Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neurosci 366:95–104. https://doi.org/10.1080/21691401.2019.1699831

    Article  CAS  Google Scholar 

  87. She DT, Wong LJ, Baik SH, Arumugam TV (2018) SIRT2 inhibition confers neuroprotection by downregulation of FOXO3a and MAPK signaling pathways in ischemic stroke. Mol Neurobiol 55:9188–9203. https://doi.org/10.1007/s12035-018-1058-0

    Article  CAS  PubMed  Google Scholar 

  88. Dong W, Li N, Gao D, Zhen H, Zhang X, Li F (2008) Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg 48:709–714. https://doi.org/10.1016/j.jvs.2008.04.007

    Article  PubMed  Google Scholar 

  89. Zhu HR, Wang ZY, Zhu XL, Wu XX, Li EG, Xu Y (2010) Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1α expression in experimental stroke. Neuropharmacol 59:70–76. https://doi.org/10.1016/j.neuropharm.2010.03.017

    Article  CAS  Google Scholar 

  90. Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK (2019) Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 12:25. https://doi.org/10.3389/fnmol.2019.00025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pasinetti GM, Bilski AE, Zhao W (2013) Sirtuins as therapeutic targets of ALS. Cell Res 23:1073–1074. https://doi.org/10.1038/cr.2013.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gros-Louis F, Gaspar C, Rouleau GA (2006) Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)-Mol Basis Dis 1762:956–972. https://doi.org/10.1016/j.bbadis.2006.01.004

    Article  CAS  Google Scholar 

  93. Song L, Chen L, Zhang X, Li J (2014) Le W (2014) Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1G93A mouse model of amyotrophic lateral sclerosis. Biomed Res Int 2014:1–10. https://doi.org/10.1155/2014/483501

    Article  Google Scholar 

  94. Markert CD, Kim E, Gifondorwa DJ, Childers MK, Milligan CE (2010) A single-dose resveratrol treatment in a mouse model of amyotrophic lateral sclerosis. J Med Food 13:1081–1085. https://doi.org/10.1089/jmf.2009.0243

    Article  CAS  PubMed  Google Scholar 

  95. Raghavan A, Shah ZA (2012) Sirtuins in neurodegenerative diseases: a biological-chemical perspective. Neurodegener Dis 9:1–10. https://doi.org/10.1159/000329724

    Article  CAS  PubMed  Google Scholar 

  96. Chen X, Wales P, Quinti L, Zuo F, Moniot S, Herisson F, Rauf NA, Wang H et al (2015) The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson’s disease but not amyotrophic lateral sclerosis and cerebral ischemia. PLoS One 10:0116919. https://doi.org/10.1371/journal.pone.0116919

    Article  CAS  Google Scholar 

  97. Taes I, Timmers M, Hersmus N, Bento-Abreu A, Van Den Bosch L, Van Damme P, Auwerx J, Robberecht W (2013) Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 22:1783–1790. https://doi.org/10.1093/hmg/ddt028

    Article  CAS  PubMed  Google Scholar 

  98. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444. https://doi.org/10.1016/s1097-2765(03)00038-8

    Article  CAS  PubMed  Google Scholar 

  99. North BJ, Verdin E (2007) Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2:784. https://doi.org/10.1371/journal.pone.0000784

    Article  CAS  Google Scholar 

  100. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832. https://doi.org/10.1074/jbc.m609554200

    Article  CAS  PubMed  Google Scholar 

  101. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Sci 305:1010–1013. https://doi.org/10.1126/science.1098014

    Article  CAS  Google Scholar 

  102. Villalba JM, Alcaín FJ (2012) Sirtuin activators and inhibitors. Biofactors 38:349–359. https://doi.org/10.1016/j.pharmthera.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M et al (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61. https://doi.org/10.1186/s13148-016-0224-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, DePinho RA et al (2006) Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66:4368–4377. https://doi.org/10.1158/0008-5472.can-05-3617

    Article  CAS  PubMed  Google Scholar 

  105. Zhao S, Zhu YY, Wang XY, Liu YS, Sun YX, Zhao QJ, Li HY (2020) Structural Insight into the Interactions between structurally similar inhibitors and SIRT6. Int J Mol Sci 21:2601. https://doi.org/10.3390/ijms21072601

    Article  CAS  PubMed Central  Google Scholar 

  106. Chakraborty C (2013) Sirtuins family-recent development as a drug target for aging, metabolism, and age related diseases. Curr Drug Targets 14:666–675. https://doi.org/10.2174/1389450111314060008

    Article  CAS  PubMed  Google Scholar 

  107. Liu L, Arun A, Ellis L, Peritore C, Donmez G (2014) SIRT2 enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci 6:184. https://doi.org/10.3389/fnagi.2014.00184

    Article  PubMed  PubMed Central  Google Scholar 

  108. Parker JA, Vazquez-Manrique RP, Tourette C, Farina F, Offner N, Mukhopadhyay A, Orfila AM, Darbois A et al (2012) Integration of β-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 32:12630–12640. https://doi.org/10.1523/jneurosci.0277-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India, for providing the necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Conceived and designed the experiments: Thakur Gurjeet Singh. Analyzed the data: Amarjot Kaur Grewal & Heena Khan. Wrote the manuscript: Heena Khan, Palak Tiwari. Editing of the Manuscript: Amarjot Kaur & Thakur Gurjeet Singh. Critically reviewed the article: Thakur Gurjeet Singh. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Tiwari, P., Kaur, A. et al. Sirtuin Acetylation and Deacetylation: a Complex Paradigm in Neurodegenerative Disease. Mol Neurobiol 58, 3903–3917 (2021). https://doi.org/10.1007/s12035-021-02387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02387-w

Keywords

Navigation