Skip to main content

Advertisement

Log in

Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Increasing evidence corroborates the fundamental role of neuroinflammation in the development of epilepsy. Proinflammatory cytokines (PICs) are crucial contributors to the inflammatory reactions in the brain. It is evidenced that epileptic seizures are associated with elevated levels of PICs, particularly interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which underscores the impact of neuroinflammation and PICs on hyperexcitability of the brain and epileptogenesis. Since the pathophysiology of epilepsy is unknown, determining the possible roles of PICs in epileptogenesis could facilitate unraveling the pathophysiology of epilepsy. About one-third of epileptic patients are drug-resistant, and existing treatments only resolve symptoms and do not inhibit epileptogenesis; thus, treatment of epilepsy is still challenging. Accordingly, understanding the function of PICs in epilepsy could provide us with promising targets for the treatment of epilepsy, especially drug-resistant type. In this review, we outline the role of neuroinflammation and its primary mediators, including IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α, and interferon-γ (IFN-γ) in the pathophysiology of epilepsy. Furthermore, we discuss the potential therapeutic targeting of PICs and cytokine receptors in the treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CNS:

Central nervous system

BBB:

Blood–brain barrier

PIC:

Proinflammatory cytokines

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

SLE:

Systemic lupus erythematosus

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin-1β

TNFR1:

TNF receptor-1

MS:

Multiple sclerosis

APP:

Amyloid precursor protein

Aβ:

β-Amyloid

NF-кB:

Nuclear factor-кB

TLR:

Toll-like receptor

HMGB1:

High Mobility Group Box 1

NMDA:

N-methyl-D-aspartate, NMDAR, N-methyl-D-aspartate receptor

TLE:

Temporal lobe epilepsy

KA:

Kainic acid

PI3K/Akt/mTOR:

Phosphoinositide 3-kinase/Akt/mammalian target of rapamycin

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

TGF-β:

Transforming growth factor-β

PGE2:

Prostaglandin E2

IL-1R:

IL-1 family receptor

Ig:

Immunoglobulin

TIR:

Toll/IL-1 receptor

IL-1RA:

IL-1 receptor antagonist

ICV:

Intracerebroventricular

N-Smase:

Neutral sphingomyelinase

NO:

Nitric oxide

SYN:

Synaptophysin

LPS:

Lipopolysaccharide

GABA:

Gamma-aminobutyric acid

GAT-1:

GABA transporter type 1

FIRES:

Febrile infection-related epilepsy syndrome

ICE/caspase 1:

IL-1β converting enzyme

IL-6R:

IL-6 receptor

gp130:

130 KDa glycoprotein

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

MAPK:

Mitogen-activated protein kinase

mIL-6R:

Membrane-bound IL-6R

sIL-6R:

Soluble IL-6R

sgp130:

Soluble form of gp130

XLE:

Extra-temporal lobe epilepsy

ADAM:

A Disintegrin and Metalloproteinase

tmTNF-α:

Transmembrane TNF-α

TACE:

TNF-α converting enzyme

sTNF-α:

Soluble TNF-α

TRADD:

TNFR1-associated death domain

TRAF:

TNF receptor-associated factor

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors

TRPV1:

Transient receptor potential vanilloid 1

Sema7A:

Semaphoring7A

HIF-1α:

Hypoxia-inducible factor subtype 1α

IFN-γ:

Interferon-γ

NK cells:

Natural killer cells

APC:

Antigen-presenting cell

IFN-γR:

Interferon-γ receptor

References

  1. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D et al (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl 7):2–26

    CAS  PubMed  Google Scholar 

  2. Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A (2011) Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med 270(4):319–326

    CAS  PubMed  Google Scholar 

  3. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4):475–482

    PubMed  Google Scholar 

  4. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L et al (2017) ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521

    PubMed  PubMed Central  Google Scholar 

  5. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15(8):459–472

    CAS  PubMed  Google Scholar 

  6. Neligan A, Hauser WA, Sander JW (2012) The epidemiology of the epilepsies. Handb Clin Neurol 107:113–133

    PubMed  Google Scholar 

  7. Alyu F, Dikmen M (2017) Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr 29(1):1–16

    PubMed  Google Scholar 

  8. de Vries EE, van den Munckhof B, Braun KP, van Royen-Kerkhof A, de Jager W, Jansen FE (2016) Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci Biobehav Rev 63:177–190

    PubMed  Google Scholar 

  9. Liu AH, Wu YT, Li LP, Wang YP (2018) The roles of interleukin-1 and RhoA signaling pathway in rat epilepsy model treated with low-frequency electrical stimulation. J Cell Biochem 119(3):2535–2544

    CAS  PubMed  Google Scholar 

  10. Grosso S, Farnetani M, Mostardini R, Cordelli D, Berardi R, Balestri P (2008) A comparative study of hydrocortisone versus deflazacort in drug-resistant epilepsy of childhood. Epilepsy Res 81(1):80–85

    CAS  PubMed  Google Scholar 

  11. Kneen R, Appleton RE (2006) Alternative approaches to conventional antiepileptic drugs in the management of paediatric epilepsy. Arch Dis Child 91(11):936–941

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta R, Appleton R (2005) Corticosteroids in the management of the paediatric epilepsies. Arch Dis Child 90(4):379–384

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Menon D, Menon RN, Kesavadas C, Mahadevan A, Radhakrishnan A, Kannoth S et al (2018) Clinical-radiological-pathological correlation in an unusual case of refractory epilepsy: a two-year journey of whodunit! Epileptic Disord 20(1):51–59

    PubMed  Google Scholar 

  14. Löscher W, Klitgaard H, Twyman RE, Schmidt D (2013) New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 12(10):757–776

    PubMed  Google Scholar 

  15. Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    CAS  PubMed  Google Scholar 

  16. Vezzani A, Balosso S, Maroso M, Zardoni D, Noé F, Ravizza T (2010) ICE/caspase 1 inhibitors and IL-1beta receptor antagonists as potential therapeutics in epilepsy. Curr Opin Investig Drugs 11(1):43–50

    CAS  PubMed  Google Scholar 

  17. Khansari PS, Sperlagh B (2012) Inflammation in neurological and psychiatric diseases. Inflammopharmacology 20(3):103–107

    CAS  PubMed  Google Scholar 

  18. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127(7):624–633

    CAS  PubMed  Google Scholar 

  20. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Parker Harp CR, Archambault AS, Sim J, Ferris ST, Mikesell RJ, Koni PA et al (2015) B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis. J Immunol 194(11):5077–5084

    CAS  PubMed  Google Scholar 

  22. Zhang C, Raveney BJE, Hohjoh H, Tomi C, Oki S, Yamamura T (2019) Extrapituitary prolactin promotes generation of Eomes-positive helper T cells mediating neuroinflammation. Proc Natl Acad Sci U S A 116(42):21131–21139

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Członkowska A, Kurkowska-Jastrzębska I (2011) Inflammation and gliosis in neurological diseases–clinical implications. J Neuroimmunol 231(1–2):78–85

    PubMed  Google Scholar 

  24. Sochocka M, Diniz BS, Leszek J (2017) Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol 54(10):8071–8089

    CAS  PubMed  Google Scholar 

  25. dos Santos I, Dias M, Gomes-Leal W (2021) Microglial activation and adult neurogenesis after brain stroke. Neural Regen Res 16(3):456–459

    PubMed  Google Scholar 

  26. Mukhara D, Oh U, Neigh GN (2020) Neuroinflammation. Handb Clin Neurol 175:235–259

    PubMed  Google Scholar 

  27. Bendorius M, Po C, Muller S, Jeltsch-David H (2018) From systemic inflammation to neuroinflammation: the case of neurolupus. Int J Mol Sci 19(11):3588

    PubMed Central  Google Scholar 

  28. Yang QQ, Zhou JW (2019) Neuroinflammation in the central nervous system: Symphony of glial cells. Glia 67(6):1017–1035

    PubMed  Google Scholar 

  29. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12

    CAS  PubMed  Google Scholar 

  30. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15(1):144

    PubMed  PubMed Central  Google Scholar 

  31. Micheau O, Tschopp J (2003) Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell 114(2):181–190

    CAS  PubMed  Google Scholar 

  32. Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C et al (2019) α-Synuclein in Parkinson’s disease: causal or bystander? J Neural Transm (Vienna) 126(7):815–840

    Google Scholar 

  33. Koudriavtseva T, Mainero C (2016) Neuroinflammation, neurodegeneration and regeneration in multiple sclerosis: Intercorrelated manifestations of the immune response. Neural Regen Res 11(11):1727–1730

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Segal BM (2018) Modulation of the Innate Immune System: A Future Approach to the Treatment of Neurological Disease. Clin Immunol 189:1–3

    CAS  PubMed  Google Scholar 

  35. Morgan BP (2015) The role of complement in neurological and neuropsychiatric diseases. Expert Rev Clin Immunol 11(10):1109–1119

    CAS  PubMed  Google Scholar 

  36. Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, Mahmood F et al (2015) Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother 11(8):2021–2029

    PubMed  PubMed Central  Google Scholar 

  37. Tenner AJ (2020) Complement-Mediated Events in Alzheimer’s Disease: Mechanisms and Potential Therapeutic Targets. J Immunol 204(2):306–315

    CAS  PubMed  Google Scholar 

  38. Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J et al (2006) Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem Biophys Res Commun 342(4):1034–1039

    CAS  PubMed  Google Scholar 

  39. Kopczynska M, Zelek WM, Vespa S, Touchard S, Wardle M, Loveless S et al (2018) Complement system biomarkers in epilepsy. Seizure 60:1–7

    PubMed  Google Scholar 

  40. Shastri A, Bonifati DM, Kishore U (2013) Innate immunity and neuroinflammation. Mediators Inflamm 2013:342931. https://doi.org/10.1155/2013/342931

  41. Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H (2016) Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer’s Disease. J Neurosci 36(2):577–589

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liguori C, Romigi A, Izzi F, Placidi F, Nuccetelli M, Cordella A et al (2017) Complement system dysregulation in patients affected by Idiopathic Generalized Epilepsy and the effect of antiepileptic treatment. Epilepsy Res 137:107–111

    CAS  PubMed  Google Scholar 

  43. Xiong Z-Q, Qian W, Suzuki K, McNamara JO (2003) Formation of Complement Membrane Attack Complex in Mammalian Cerebral Cortex Evokes Seizures and Neurodegeneration. J Neurosci 23(3):955

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Aronica E, Boer K, van Vliet EA, Redeker S, Baayen JC, Spliet WGM et al (2007) Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 26(3):497–511

    CAS  PubMed  Google Scholar 

  45. Benson MJ, Thomas NK, Talwar S, Hodson MP, Lynch JW, Woodruff TM et al (2015) A novel anticonvulsant mechanism via inhibition of complement receptor C5ar1 in murine epilepsy models. Neurobiol Dis 76:87–97

    CAS  PubMed  Google Scholar 

  46. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24

    CAS  PubMed  Google Scholar 

  47. Barker-Haliski ML, Löscher W, White HS, Galanopoulou AS (2017) Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia 58:39–47

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sharma R, Leung WL, Zamani A, O’brien TJ, Espinosa PMC, Semple BD. (2019) Neuroinflammation in post-traumatic epilepsy: Pathophysiology and tractable therapeutic targets. Brain Sci 9(11).

  49. Balosso S, Liu J, Bianchi ME, Vezzani A (2013) Disulfide-Containing High Mobility Group Box-1 Promotes N-Methyl-d-Aspartate Receptor Function and Excitotoxicity by Activating Toll-Like Receptor 4-Dependent Signaling in Hippocampal Neurons. Antioxid Redox Signal 21(12):1726–1740

    Google Scholar 

  50. Meng F, Yao L (2020) The role of inflammation in epileptogenesis. Acta Epileptologica 2(1):15

    Google Scholar 

  51. Müller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A et al (2001) New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. Embo j 20(16):4337–4340

    PubMed  PubMed Central  Google Scholar 

  52. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM et al (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16(4):413–419

    CAS  PubMed  Google Scholar 

  53. Hosseinzadeh M, Pourbadie HG, Khodagholi F, Daftari M, Naderi N, Motamedi F (2019) Preconditioning with toll-like receptor agonists attenuates seizure activity and neuronal hyperexcitability in the pilocarpine rat model of epilepsy. Neurosci 408:388–399

    CAS  Google Scholar 

  54. Gross A, Benninger F, Madar R, Illouz T, Griffioen K, Steiner I et al (2017) Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia 58(4):586–596

    CAS  PubMed  Google Scholar 

  55. Dombkowski AA, Cukovic D, Bagla S, Jones M, Caruso JA, Chugani HT et al (2019) TLR7 activation in epilepsy of tuberous sclerosis complex. Inflamm Res 68(12):993–998

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hodges SL, Lugo JN (2020) Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res. 161:106282

    CAS  PubMed  Google Scholar 

  57. Ostendorf AP, Wong M (2015) mTOR Inhibition in Epilepsy: Rationale and Clinical Perspectives. CNS Drugs 29(2):91–99

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Talos DM, Sun H, Zhou X, Fitzgerald EC, Jackson MC, Klein PM et al (2012) The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway. PLoS ONE 7(5):e35885

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamanaka G, Morichi S, Takamatsu T, Watanabe Y, Suzuki S, Ishida Y, Oana S, Yamazaki T et al (2021) Links between immune cells from the periphery and the brain in the pathogenesis of epilepsy: a narrative review. Int J Mol Sci. 22(9):4395. https://doi.org/10.3390/ijms22094395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K et al (2011) Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci 31(11):4037–4050

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Al Nimer F, Jelcic I, Kempf C, Pieper T, Budka H, Sospedra M et al (2017) Phenotypic and functional complexity of brain-infiltrating T cells in Rasmussen encephalitis. Neurol Neuroimmunol Neuroinflamm 5(1):e419-e

    Google Scholar 

  62. Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M et al (1862) (2016) Dendritic cells in brain diseases. Biochim Biophys Acta (BBA) - Mol Basis Dis 3:352–367

    Google Scholar 

  63. Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A (2020) Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 167:107742

    CAS  PubMed  Google Scholar 

  64. Kothur K, Bandodkar S, Wienholt L, Chu S, Pope A, Gill D et al (2019) Etiology is the key determinant of neuroinflammation in epilepsy: Elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia 60(8):1678–1688

    CAS  PubMed  Google Scholar 

  65. Costa-Ferro ZS, Souza BS, Leal MM, Kaneto CM, Azevedo CM, da Silva IC et al (2012) Transplantation of bone marrow mononuclear cells decreases seizure incidence, mitigates neuronal loss and modulates pro-inflammatory cytokine production in epileptic rats. Neurobiol Dis 46(2):302–313

    CAS  PubMed  Google Scholar 

  66. Lorigados Pedre L, Morales Chacón LM, Pavón Fuentes N, Robinson Agramonte MLA, Serrano Sánchez T, Cruz-Xenes RM, Díaz Hung ML, Estupiñán Díaz B et al (2018) Follow-up of peripheral IL-1β and IL-6 and relation with apoptotic death in drug-resistant temporal lobe epilepsy patients submitted to surgery. Behav Sci (Basel) 8(2). https://doi.org/10.3390/bs8020021

  67. Boraschi D, Tagliabue A (2013) The interleukin-1 receptor family. Semin Immunol 25(6):394–407

    CAS  PubMed  Google Scholar 

  68. Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 281(1):8–27

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mendiola AS, Cardona AE (2018) The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna) 125(5):781–795

    CAS  Google Scholar 

  70. Ravizza T, Boer K, Redeker S, Spliet WG, van Rijen PC, Troost D et al (2006) The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis 24(1):128–143

    CAS  PubMed  Google Scholar 

  71. Lehtimäki KA, Peltola J, Koskikallio E, Keränen T, Honkaniemi J (2003) Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res 110(2):253–260

    PubMed  Google Scholar 

  72. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T (2011) IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 25(7):1281–1289

    CAS  PubMed  Google Scholar 

  73. Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS (2009) The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 216(2):258–271

    CAS  PubMed  Google Scholar 

  74. Gallentine WB, Shinnar S, Hesdorffer DC, Epstein L, Nordli DR Jr, Lewis DV et al (2017) Plasma cytokines associated with febrile status epilepticus in children: A potential biomarker for acute hippocampal injury. Epilepsia 58(6):1102–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Su J, Yin J, Qin W, Sha S, Xu J, Jiang C (2015) Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus. Neurochem Res 40(3):621–627

    CAS  PubMed  Google Scholar 

  76. Somera-Molina KC, Nair S, Van Eldik LJ, Watterson DM, Wainwright MS (2009) Enhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a “two-hit” seizure model. Brain Res 1282:162–172

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sayyah M, Beheshti S, Shokrgozar MA, Eslami-far A, Deljoo Z, Khabiri AR et al (2005) Antiepileptogenic and anticonvulsant activity of interleukin-1 beta in amygdala-kindled rats. Exp Neurol 191(1):145–153

    CAS  PubMed  Google Scholar 

  78. Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A (2014) The role of interleukin-1β in the pentylenetetrazole-induced kindling of seizures, in the rat hippocampus. Eur J Pharmacol 731:31–37

    PubMed  Google Scholar 

  79. Mine J, Takahashi Y, Mogami Y, Ikeda H, Kubota Y, Imai K (2013) Characteristics of epilepsy and immunological markers in epileptic patients after influenza-associated encephalopathy. Neurol Asia 18(1):35–45

    Google Scholar 

  80. Uludag IF, Duksal T, Tiftikcioglu BI, Zorlu Y, Ozkaya F, Kirkali G (2015) IL-1β, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure 26:22–25

    PubMed  Google Scholar 

  81. Mao LY, Ding J, Peng WF, Ma Y, Zhang YH, Fan W et al (2013) Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 54(9):e142–e145

    CAS  PubMed  Google Scholar 

  82. Ravizza T, Vezzani A (2006) Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137(1):301–308

    CAS  PubMed  Google Scholar 

  83. Alapirtti T, Rinta S, Hulkkonen J, Mäkinen R, Keränen T, Peltola J (2009) Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: A video-EEG study. J Neurol Sci 280(1–2):94–97

    CAS  PubMed  Google Scholar 

  84. Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F et al (2011) Cytokines and epilepsy. Seizure 20(3):249–256

    PubMed  Google Scholar 

  85. Weber A, Wasiliew P, Kracht M. (2010) Interleukin-1β (IL-1β) processing pathway. Science Signaling.3(105).

  86. Vezzani A, Baram TZ (2007) New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr 7(2):45–50

    PubMed  PubMed Central  Google Scholar 

  87. Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, et al. (2017) Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling Epilepsy-Induced Hippocampal Endoplasmic Reticulum Stress and Oxidative Damage. Frontiers in cellular neuroscience. 11:377-

  88. Xiao Z, Peng J, Wu L, Arafat A, Yin F (2017) The effect of IL-1β on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy. Neurol Res 39(7):640–648

    CAS  PubMed  Google Scholar 

  89. Riazi K, Galic MA, Pittman QJ (2010) Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 89(1):34–42

    CAS  PubMed  Google Scholar 

  90. Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS (2009) The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132(Pt 9):2478–2486

    PubMed  PubMed Central  Google Scholar 

  91. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364

    CAS  PubMed  Google Scholar 

  92. Vezzani A (2019) Epilepsy: Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy. Eur J Neurol 26:9

    Google Scholar 

  93. Ulusoy C, Vanlı-Yavuz EN, Şanlı E, Timirci-Kahraman Ö, Yılmaz V, Bebek N et al (2020) Peripheral blood expression levels of inflammasome complex components in two different focal epilepsy syndromes. J Neuroimmunol. 347:577343

    CAS  PubMed  Google Scholar 

  94. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Castañeda-Cabral JL, Ureña-Guerrero ME, Beas-Zárate C, Colunga-Durán A, Nuñez-Lumbreras MLA, Orozco-Suárez S et al (2020) Increased expression of proinflammatory cytokines and iNOS in the neocortical microvasculature of patients with temporal lobe epilepsy. Immunol Res 68(3):169–176

    PubMed  Google Scholar 

  96. Klement W, Garbelli R, Zub E, Rossini L, Tassi L, Girard B et al (2018) Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature. Neurobiol Dis 113:70–81

    CAS  PubMed  Google Scholar 

  97. Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA et al (2015) GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 82:311–320

    CAS  PubMed  Google Scholar 

  98. Xiaoqin Z, Zhengli L, Changgeng Z, Xiaojing W, Li L (2005) Changes in behavior and amino acid neurotransmitters in the brain of rats with seizure induced by IL-1beta or IL-6. J Huazhong Univ Sci Technolog Med Sci 25(3):236–239

    PubMed  Google Scholar 

  99. Fu CY, He XY, Li XF, Zhang X, Huang ZW, Li J et al (2015) Nefiracetam Attenuates Pro-Inflammatory Cytokines and GABA Transporter in Specific Brain Regions of Rats with Post-Ischemic Seizures. Cell Physiol Biochem 37(5):2023–2031

    CAS  PubMed  Google Scholar 

  100. Feng B, Tang Y, Chen B, Xu C, Wang Y, Dai Y et al (2016) Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci Rep 6:21931

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kamaşak T, Dilber B, Yaman S, Durgut BD, Kurt T, Çoban E et al (2020) HMGB-1, TLR4, IL-1R1, TNF-α, and IL-1β: novel epilepsy markers? Epileptic Disord 22(2):183–193

    PubMed  Google Scholar 

  102. Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A et al (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A 97(21):11534–11539

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21

    CAS  PubMed  Google Scholar 

  104. Kenney-Jung DL, Vezzani A, Kahoud RJ, LaFrance-Corey RG, Ho ML, Muskardin TW et al (2016) Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol 80(6):939–945

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dilena R, Mauri E, Aronica E, Bernasconi P, Bana C, Cappelletti C et al (2019) Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open 4(2):344–350

    PubMed  PubMed Central  Google Scholar 

  106. DeSena AD, Do T, Schulert GS (2018) Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J Neuroinflammation 15(1):38

    PubMed  PubMed Central  Google Scholar 

  107. Jyonouchi H, Geng L (2016) Intractable Epilepsy (IE) and Responses to Anakinra, a Human Recombinant IL-1 Receptor Agonist (IL-1ra): Case Reports. J clin cellular immunol 7:1–5

    Google Scholar 

  108. Noe FM, Polascheck N, Frigerio F, Bankstahl M, Ravizza T, Marchini S et al (2013) Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 59:183–193

    CAS  PubMed  Google Scholar 

  109. Mula M (2013) Emerging drugs for focal epilepsy. Expert Opin Emerg Drugs 18(1):87–95

    CAS  PubMed  Google Scholar 

  110. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J et al (2011) Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8(2):304–315

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813(5):878–888

    CAS  PubMed  Google Scholar 

  112. Rose-John S (2018) Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol 10(2):a028415. https://doi.org/10.1101/cshperspect.a028415

  113. Wolf J, Rose-John S, Garbers C (2014) Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70(1):11–20

    CAS  PubMed  Google Scholar 

  114. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 122(4):143–159

    CAS  Google Scholar 

  115. Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 1863(6 Pt A):1218–1227

    CAS  PubMed  Google Scholar 

  116. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8(9):1254–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Šutulović N, Grubač Ž, Šuvakov S, Jovanović Đ, Puškaš N, Macut Đ et al (2019) Chronic prostatitis/chronic pelvic pain syndrome increases susceptibility to seizures in rats and alters brain levels of IL-1β and IL-6. Epilepsy Res 153:19–27

    PubMed  Google Scholar 

  118. Merbl Y, Sommer A, Chai O, Aroch I, Zimmerman G, Friedman A et al (2014) Tumor necrosis factor-α and interleukin-6 concentrations in cerebrospinal fluid of dogs after seizures. J Vet Intern Med 28(6):1775–1781

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Luo X, Li D, Cen D, He Z, Meng Z, Liang L (2010) Effect of intravenous immunoglobulin treatment on brain interferon-gamma and interleukin-6 levels in a rat kindling model. Epilepsy Res 88(2–3):162–167

    CAS  PubMed  Google Scholar 

  120. Ishikawa N, Kobayashi Y, Fujii Y, Kobayashi M (2015) Increased interleukin-6 and high-sensitivity C-reactive protein levels in pediatric epilepsy patients with frequent, refractory generalized motor seizures. Seizure 25:136–140

    PubMed  Google Scholar 

  121. Tao H, Gong Y, Yu Q, Zhou H, Liu Y (2020) Elevated Serum Matrix Metalloproteinase-9, Interleukin-6, Hypersensitive C-Reactive Protein, and Homocysteine Levels in Patients with Epilepsy. J Interferon Cytokine Res 40(3):152–158

    CAS  PubMed  Google Scholar 

  122. Peltola J, Hurme M, Miettinen A, Keränen T (1998) Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res 31(2):129–133

    CAS  PubMed  Google Scholar 

  123. Numis AL, Foster-Barber A, Deng X, Rogers EE, Barkovich AJ, Ferriero DM et al (2019) Early changes in pro-inflammatory cytokine levels in neonates with encephalopathy are associated with remote epilepsy. Pediatr Res 86(5):616–621

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yu N, Di Q, Hu Y, Zhang YF, Su LY, Liu XH et al (2012) A meta-analysis of pro-inflammatory cytokines in the plasma of epileptic patients with recent seizure. Neurosci Lett 514(1):110–115

    CAS  PubMed  Google Scholar 

  125. Liimatainen S, Fallah M, Kharazmi E, Peltola M, Peltola J (2009) Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J Neurol 256(5):796–802

    CAS  PubMed  Google Scholar 

  126. Lehtimäki KA, Keränen T, Huhtala H, Hurme M, Ollikainen J, Honkaniemi J et al (2004) Regulation of IL-6 system in cerebrospinal fluid and serum compartments by seizures: the effect of seizure type and duration. J Neuroimmunol 152(1–2):121–125

    PubMed  Google Scholar 

  127. Lehtimäki KA, Keränen T, Palmio J, Mäkinen R, Hurme M, Honkaniemi J et al (2007) Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol Scand 116(4):226–230

    PubMed  Google Scholar 

  128. Penkowa M, Molinero A, Carrasco J, Hidalgo J (2001) Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 102(4):805–818

    CAS  PubMed  Google Scholar 

  129. Fukuda M, Morimoto T, Suzuki Y, Shinonaga C, Ishida Y (2007) Interleukin-6 attenuates hyperthermia-induced seizures in developing rats. Brain Dev 29(10):644–648

    PubMed  Google Scholar 

  130. D’Arcangelo G, Tancredi V, Onofri F, D’Antuono M, Giovedì S, Benfenati F (2000) Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex. Eur J Neurosci 12(4):1241–1252

    CAS  PubMed  Google Scholar 

  131. Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J (2004) Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 365(2):106–110

    CAS  PubMed  Google Scholar 

  132. Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T et al (2002) Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43(Suppl 5):30–35

    CAS  PubMed  Google Scholar 

  133. Jun JS, Lee ST, Kim R, Chu K, Lee SK (2018) Tocilizumab treatment for new onset refractory status epilepticus. Ann Neurol 84(6):940–945

    CAS  PubMed  Google Scholar 

  134. Cantarín-Extremera V, Jiménez-Legido M, Duat-Rodríguez A, García-Fernández M, Ortiz-Cabrera NV, Ruiz-Falcó-Rojas ML et al (2020) Tocilizumab in pediatric refractory status epilepticus and acute epilepsy: Experience in two patients. J Neuroimmunol. 340:577142

    PubMed  Google Scholar 

  135. Stredny CM, Case S, Sansevere AJ, Son M, Henderson L, Gorman MP (2020) Interleukin-6 Blockade With Tocilizumab in Anakinra-Refractory Febrile Infection-Related Epilepsy Syndrome (FIRES). Child Neurol Open 7:2329048x20979253

    PubMed  PubMed Central  Google Scholar 

  136. Leo A, Nesci V, Tallarico M, Amodio N, Cantafio EMG, De Sarro G, Constanti A, Russo E et al (2020) IL-6 receptor blockade by tocilizumab has anti-absence and anti-epileptogenic effects in the WAG/Rij rat model of absence epilepsy. Neurotherapeutics. 17(4):2004–2014. https://doi.org/10.1007/s13311-020-00893-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. West PK, Viengkhou B, Campbell IL, Hofer MJ (2019) Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 67(10):1821–1841

    PubMed  Google Scholar 

  138. Garcia-Oscos F, Peña D, Housini M, Cheng D, Lopez D, Borland MS et al (2015) Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex. Brain Behav Immun 43:149–158

    CAS  PubMed  Google Scholar 

  139. Zelová H, Hošek J (2013) TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res 62(7):641–651

    PubMed  Google Scholar 

  140. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T (2010) Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49(7):1215–1228

    CAS  Google Scholar 

  141. Gough P, Myles IA (2020) Tumor necrosis factor receptors: pleiotropic signaling complexes and their differential effects. Front Immunol 11:585880. https://doi.org/10.3389/fimmu.2020.585880

  142. Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014:861231

    PubMed  PubMed Central  Google Scholar 

  143. Turrin NP, Rivest S (2004) Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 16(2):321–334

    CAS  PubMed  Google Scholar 

  144. Clark IA, Vissel B (2016) Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 13(1):236

    PubMed  PubMed Central  Google Scholar 

  145. Shi Y, Zhang L, Teng J, Miao W (2018) HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy. Mol Med Rep 17(4):5125–5131

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gao F, Gao Y, Zhang SJ, Zhe X, Meng FL, Qian H et al (2017) Alteration of plasma cytokines in patients with active epilepsy. Acta Neurol Scand 135(6):663–669

    CAS  PubMed  Google Scholar 

  147. Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M et al (2000) Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 41(3):205–211

    CAS  PubMed  Google Scholar 

  148. Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG et al (2005) Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol 57(6):804–812

    CAS  PubMed  Google Scholar 

  149. Balosso S, Ravizza T, Aronica E, Vezzani A (2013) The dual role of TNF-α and its receptors in seizures. Exp Neurol 247:267–271

    CAS  PubMed  Google Scholar 

  150. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22(6):797–803

    CAS  PubMed  Google Scholar 

  151. Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR et al (2005) Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 25(29):6734–6744

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25(12):3219–3228

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kamali AN, Zian Z, Bautista JM, Hamedifar H, Hossein-Khannazer N, Hosseinzadeh R, Yazdani R, Azizi G (2021) The potential role of pro-inflammatory and anti-inflammatory cytokines in epilepsy pathogenesis. Endocr Metab Immune Disord Drug Targets 21(10):1760–1774. https://doi.org/10.2174/1871530320999201116200940

    Article  PubMed  Google Scholar 

  154. Shimada T, Takemiya T, Sugiura H, Yamagata K (2014) Role of inflammatory mediators in the pathogenesis of epilepsy. Mediators Inflamm. 2014:901902

    PubMed  PubMed Central  Google Scholar 

  155. Wang X, Yang XL, Kong WL, Zeng ML, Shao L, Jiang GT et al (2019) TRPV1 translocated to astrocytic membrane to promote migration and inflammatory infiltration thus promotes epilepsy after hypoxic ischemia in immature brain. J Neuroinflammation 16(1):214

    PubMed  PubMed Central  Google Scholar 

  156. Wang Z, Zhou L, An D, Xu W, Wu C, Sha S et al (2019) TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death Dis 10(6):386

    PubMed  PubMed Central  Google Scholar 

  157. Deng J, Xu T, Yang J, Zhang KM, Li Q, Yu XY et al (2020) Sema7A, a brain immune regulator, regulates seizure activity in PTZ-kindled epileptic rats. CNS Neurosci Ther 26(1):101–116

    CAS  PubMed  Google Scholar 

  158. Yang J, He F, Meng Q, Sun Y, Wang W, Wang C (2016) Inhibiting HIF-1α Decreases Expression of TNF-α and Caspase-3 in Specific Brain Regions Exposed Kainic Acid-Induced Status Epilepticus. Cell Physiol Biochem 38(1):75–82

    CAS  PubMed  Google Scholar 

  159. Lagarde S, Villeneuve N, Trébuchon A, Kaphan E, Lepine A, McGonigal A et al (2016) Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: An open pilot study. Epilepsia 57(6):956–966

    CAS  PubMed  Google Scholar 

  160. Kak G, Raza M, Tiwari BK (2018) Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts 9(1):64–79

    CAS  PubMed  Google Scholar 

  161. Popko B, Corbin JG, Baerwald KD, Dupree J, Garcia AM (1997) The effects of interferon-gamma on the central nervous system. Mol Neurobiol 14(1–2):19–35

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Yoshitomi T, Matsubara T, Nishikawa M, Katayama K, Ichiyama T, Hayashi T et al (2000) Increased peripheral blood interferon gamma-producing T cells in acute disseminated encephalomyelitis. J Neuroimmunol 111(1–2):224–228

    CAS  PubMed  Google Scholar 

  163. Kocatürk M, Kirmit A (2022) Evaluation of IL-10, IFN-γ, and thiol-disulfide homeostasis in patients with drug-resistant epilepsy. Neurol Sci 43(1):485–492. https://doi.org/10.1007/s10072-021-05331-x

    Article  PubMed  Google Scholar 

  164. Saengow VE, Chiangjong W, Khongkhatithum C, Changtong C, Chokchaichamnankit D, Weeraphan C et al (2021) Proteomic analysis reveals plasma haptoglobin, interferon-γ, and interleukin-1β as potential biomarkers of pediatric refractory epilepsy. Brain Dev 43(3):431–439

    PubMed  Google Scholar 

  165. Moynes DM, Vanner SJ, Lomax AE (2014) Participation of interleukin 17A in neuroimmune interactions. Brain Behav Immun 41:1–9

    CAS  PubMed  Google Scholar 

  166. Rahman MT, Ghosh C, Hossain M, Linfield D, Rezaee F, Janigro D et al (2018) IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 507(1–4):274–279

    CAS  PubMed  Google Scholar 

  167. He JJ, Sun FJ, Wang Y, Luo XQ, Lei P, Zhou J et al (2016) Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J Neuroimmunol 298:153–159

    CAS  PubMed  Google Scholar 

  168. Wang Y, Wang D, Guo D (2015) Interictal cytokine levels were correlated to seizure severity of epileptic patients: a retrospective study on 1218 epileptic patients. J Transl Med 13:378

    PubMed  PubMed Central  Google Scholar 

  169. Remick DG (2005) Interleukin-8. Crit Care Med 33(12 Suppl):S466–S467

    PubMed  Google Scholar 

  170. Waugh DJJ, Wilson C (2008) The Interleukin-8 Pathway in Cancer. Clin Cancer Res 14(21):6735

    CAS  PubMed  Google Scholar 

  171. Billiau AD, Witters P, Ceulemans B, Kasran A, Wouters C, Lagae L (2007) Intravenous immunoglobulins in refractory childhood-onset epilepsy: effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. Epilepsia 48(9):1739–1749

    CAS  PubMed  Google Scholar 

  172. Taalab YM, Mohammed WF, Helmy MA, Othman AAA, Darwish M, Hassan I, Abbas M (2019) Cannabis influences the putative cytokines-related pathway of epilepsy among egyptian epileptic patients. Brain Sci 9(12):332. https://doi.org/10.3390/brainsci9120332

    Article  CAS  PubMed Central  Google Scholar 

  173. Youn Y, Sung IK, Lee IG (2013) The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr 56(7):271–274

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Mochol M, Taubøll E, Aukrust P, Ueland T, Andreassen OA, Svalheim S (2020) Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 80:221–225

    PubMed  Google Scholar 

  175. Lachos J, Zattoni M, Wieser HG, Fritschy JM, Langmann T, Schmitz G et al (2011) Characterization of the gene expression profile of human hippocampus in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res Treat. 2011:758407

    PubMed  PubMed Central  Google Scholar 

  176. Johnson EA, Guignet MA, Dao TL, Hamilton TA, Kan RK (2015) Interleukin-18 expression increases in response to neurovascular damage following soman-induced status epilepticus in rats. J Inflamm (Lond) 12:43

    PubMed Central  Google Scholar 

  177. Zhang XM, Jin T, Quezada HC, Mix E, Winblad B, Zhu J (2010) Kainic acid-induced microglial activation is attenuated in aged interleukin-18 deficient mice. J Neuroinflammation 7:26

    PubMed  PubMed Central  Google Scholar 

  178. Jung HK, Ryu HJ, Kim MJ, Kim WI, Choi HK, Choi HC et al (2012) Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-γ independent pathway. Brain Res 1447:126–134

    CAS  PubMed  Google Scholar 

  179. Klapal L, Igelhorst BA, Dietzel-Meyer ID (2016) Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18. Front Neurol 7:44

    PubMed  PubMed Central  Google Scholar 

  180. Katharesan V, Deery S, Johnson IP (2018) Neuroprotective effect of acute prior inflammation with lipopolysaccharide for adult male rat facial motoneurones. Brain Res 1696:56–62

    CAS  PubMed  Google Scholar 

  181. del Rey A, Balschun D, Wetzel W, Randolf A, Besedovsky HO (2013) A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav Immun 33:15–23

    PubMed  Google Scholar 

  182. Shinjyo N, Ståhlberg A, Dragunow M, Pekny M, Pekna M (2009) Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells 27(11):2824–2832

    CAS  PubMed  Google Scholar 

  183. Osaka H, Mukherjee P, Aisen PS, Pasinetti GM (1999) Complement-derived anaphylatoxin C5a protects against glutamate-mediated neurotoxicity. J Cell Biochem 73(3):303–311

    CAS  PubMed  Google Scholar 

  184. Pasinetti GM, Tocco G, Sakhi S, Musleh WD, DeSimoni MG, Mascarucci P et al (1996) Hereditary Deficiencies in Complement C5 Are Associated with Intensified Neurodegenerative Responses That Implicate New Roles for the C-System in Neuronal and Astrocytic Functions. Neurobiol Dis 3(3):197–204

    CAS  PubMed  Google Scholar 

  185. Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ (2006) Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiol Dis 24(1):183–193

    CAS  PubMed  Google Scholar 

  186. Casamenti F, Prosperi C, Scali C, Giovannelli L, Colivicchi MA, Faussone-Pellegrini MS et al (1999) Interleukin-1β activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implications for Alzheimer’s disease. Neuroscience 91(3):831–842

    CAS  PubMed  Google Scholar 

  187. Shao Y, Chen C, Zhu T, Sun Z, Li S, Gong L et al (2021) TRPM2 contributes to neuroinflammation and cognitive deficits in a cuprizone-induced multiple sclerosis model via NLRP3 inflammasome. Neurobiol Dis. 160:105534

    CAS  PubMed  Google Scholar 

  188. Yang F, Zhao K, Zhang X, Zhang J, Xu B (2016) ATP Induces Disruption of Tight Junction Proteins via IL-1 Beta-Dependent MMP-9 Activation of Human Blood-Brain Barrier In Vitro. Neural Plast 2016:8928530

    PubMed  PubMed Central  Google Scholar 

  189. Choi J, Min HJ, Shin JS (2011) Increased levels of HMGB1 and pro-inflammatory cytokines in children with febrile seizures. J Neuroinflammation 8:135

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Choi J, Kim SY, Kim H, Lim BC, Hwang H, Chae JH et al (2020) Serum α-synuclein and IL-1β are increased and correlated with measures of disease severity in children with epilepsy: potential prognostic biomarkers? BMC Neurol 20(1):85

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Nowak M, Bauer S, Haag A, Cepok S, Todorova-Rudolph A, Tackenberg B et al (2011) Interictal alterations of cytokines and leukocytes in patients with active epilepsy. Brain Behav Immun 25(3):423–428

    CAS  PubMed  Google Scholar 

  192. Carmeli E, Beiker R, Morad M (2009) Nitric oxide and interlukin-6 levels in intellectual disability adults with epilepsy. Res Dev Disabil 30(3):567–571

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Vezzani for reading this manuscript during its preparation.

All figures in the paper have been created using BioRender.com.

Funding

The authors did not receive fund, grant, and support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

ASK conceptualized the title, prepared the first draft, and designed the figures. NY conceptualized the title, edited and revised the manuscript and prepared the final draft. NR conceptualized the title, critically revised the manuscript, edited and finalized the draft, and supervised the project. All the authors have read and approved the final draft of the manuscript.

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Informed consent

Not applicable, because the current work is a review article.

Research involving Human Participants and/or Animals

Not applicable, because the current work is a review article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani Khaboushan, A., Yazdanpanah, N. & Rezaei, N. Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 59, 1724–1743 (2022). https://doi.org/10.1007/s12035-022-02725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02725-6

Keywords

Navigation