Skip to main content
Log in

Back to the wild: mining maize (Zea mays L.) disease resistance using advanced breeding tools

  • Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cultivated modern maize (Zea mays L.) originated through the continuous process of domestication from its wild progenitors. Today, maize is considered as the most important cereal crop which is extensively cultivated in all parts of the world. Maize shows remarkable genotypic and phenotypic diversity which makes it an ideal model species for crop genetic research. However, intensive breeding and artificial selection of desired agronomic traits greatly narrow down the genetic bases of maize. This reduction in genetic diversity among cultivated maize led to increase the chance of more attack of biotic stress as climate changes hampering the maize grain production globally. Maize germplasm requires to integrate both durable multiple-diseases and multiple insect-pathogen resistance through tapping the unexplored resources of maize landraces. Revisiting the landraces seed banks will provide effective opportunities to transfer the resistant genes into the modern cultivars. Here, we describe the maize domestication process and discuss the unique genes from wild progenitors which potentially can be utilized for disease resistant in maize. We also focus on the genetics and disease resistance mechanism of various genes against maize biotic stresses and then considered the different molecular breeding tools for gene transfer and advanced high resolution mapping for gene pyramiding in maize lines. At last, we provide an insight for targeting identified key genes through CRISPR/Cas9 genome editing system to enhance the maize resilience towards biotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium BP maize from the central Balsas River Valley, Mexico. Proc Natl Acad Sci 106(13):5019–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang N, Yan J (2021) New genomic approaches for enhancing maize genetic improvement. Curr Opin Plant Biol 60:101977

    Article  CAS  PubMed  Google Scholar 

  3. Liu H-J, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J (2020) High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32(5):1397–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu J, Fernie AR, Yan J (2020) The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement. Plant Commun 1(1):100010

    Article  PubMed  Google Scholar 

  5. Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann N Y Acad Sci 1312(1):105–112

    Article  PubMed  Google Scholar 

  6. Sahoo S, Adhikari S, Joshi A, Singh NK (2021) Use of wild progenitor teosinte in maize (Zea mays subsp. mays) improvement: present status and future prospects. Trop Plant Biol. https://doi.org/10.1007/s12042-021-09288-1

    Article  Google Scholar 

  7. Hufford MB, Xu X, Van Heerwaarden J, Pyhäjärvi T, Chia J-M, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44(7):808–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365(6454):658–664

    Article  CAS  PubMed  Google Scholar 

  9. Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  CAS  PubMed  Google Scholar 

  10. Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970–1971. Ann Rev Phytopathol 10:37–50

    Article  Google Scholar 

  11. Basu SK, Dutta M, Goyal A, Bhowmik PK, Kumar J, Nandy S, Scagliusi SM, Prasad R (2010) Is genetically modified crop the answer for the next green revolution? GM crops 1(2):68–79

    Article  PubMed  Google Scholar 

  12. Ji W, He H, Zhao S, Yan S, Fu D (2010) Identification of physiological races of Setosphaeria turcica in maize-producing region of Heilongjiang. J Maize Sci 18(1):128–134

    Google Scholar 

  13. Samantara K, Shiv A, Lorenna Lopes S, Sandhu KS, Priyadarshini P, Mohapatra SR (2021) A comprehensive review on epigenetic mechanisms and application of epigenetic modifications for crop improvement. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2021.104479

    Article  Google Scholar 

  14. Hellin J, Bellon MR, Hearne SJ (2014) Maize landraces and adaptation to climate change in Mexico. J Crop Improv 28(4):484–501

    Article  Google Scholar 

  15. Wang C, Hu S, Gardner C, Lübberstedt T (2017) Emerging avenues for utilization of exotic germplasm. Trends Plant Sci 22(7):624–637

    Article  CAS  PubMed  Google Scholar 

  16. Matsuoka Y, Vigouroux Y, Goodman MM, Sánchez JG, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084. https://doi.org/10.1073/pnas.052125199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warburton ML, Womack ED, Tang JD, Thrash A, Smith JS, Xu W, Murray SC, Williams WP (2018) Genome-wide association and metabolic pathway analysis of corn earworm resistance in maize. Plant Genome. https://doi.org/10.3835/plantgenome2017.08.0069

    Article  PubMed  Google Scholar 

  18. Yang CJ, Samayoa LF, Bradbury PJ, Olukolu BA, Xue W, York AM, Tuholski MR, Wang W, Daskalska LL, Neumeyer MA, de Jesus Sanchez-Gonzalez J (2019) The genetic architecture of teosinte catalyzed and constrained maize domestication. Proc Natl Acad Sci 116(12):5643–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mangelsdorf PC, Reeves RG (1939) The origin of Indian corn and its relatives. Tex Agric Exp Stn Bull 574:1–315

    Google Scholar 

  20. Eubanks M (1995) A cross between two maize relatives: Tripsacum dactyloides and Zea diploperennis (Poaceae). Econ Bot 49:172–182

    Article  Google Scholar 

  21. Beadle GW (1939) Teosinte and the origin of maize. J Hered 30:245–247

    Article  Google Scholar 

  22. de Lange ES, Balmer D, Mauch-Mani B, Turlings TC (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204(2):329–341

    Article  Google Scholar 

  23. Warburton ML, Rauf S, Marek L, Hussain M, Ogunola O, Jesus Sanchez Gonzalez J (2017) The use of crop wild relatives in maize and sunflower breeding. Crop Sci 57(3):1227–1240

    Article  CAS  Google Scholar 

  24. Iltis HH, Doebley JF (1980) Taxonomy of Zea (Gramineae). II. Subspecific categories in the Zea mays complex and a generic synopsis. Am J Bot 67:994–1004. https://doi.org/10.2307/2442442

    Article  Google Scholar 

  25. Wilkes HG (1967) Teosinte: the closest relative of maize. Bussey Inst. Harvard Univ., Cambridge, p 159

    Google Scholar 

  26. Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez J, Liu K et al (2005) Genetic diversity and population structure of teosinte. Genetics 169:2241–2254. https://doi.org/10.1534/genetics.104.031393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiersema, J. H. & Leon, B. (2013). GRIN taxonomy crop wild relatives project USDA, ARS, National genetic resources program, National germplasm resources laboratory, Plant exchange office, Beltsville, Maryland.

  28. Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886

    Article  PubMed  PubMed Central  Google Scholar 

  29. Doebley J (2004) The genetics of maize evolution. Ann Rev Genetics 38:37–59

    Article  CAS  Google Scholar 

  30. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321

  31. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maxted N, Vincent H (2021) Review of congruence between global crop wild relative hotspots and centres of crop origin/diversity. Genet Resour Crop Evolut. https://doi.org/10.1007/s10722-021-01114-7

    Article  Google Scholar 

  33. Coyne CJ, Shiv Kumar S, von Wettberg EB, Marques E, Berger JD, Redden RJ et al (2020) Potential and limits of exploitation of crop wild relatives for pea, lentil and chickpea improvement. Legume Sci 2:e36. https://doi.org/10.1002/leg3.36

    Article  Google Scholar 

  34. Engels JM, Thormann I (2020) Main challenges and actions needed to improve conservation and sustainable use of our crop wild relatives. Plants 9(8):968

    Article  CAS  PubMed Central  Google Scholar 

  35. Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S (2021) Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. J Exp Bot. https://doi.org/10.1093/jxb/erab276

    Article  PubMed  Google Scholar 

  36. Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity 112:30–38

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Sun B, Li Y et al (2016) Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics 17:894. https://doi.org/10.1186/s12864-016-3170-8

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li WH, Xu XD, Li G et al (2012) Characterization and molecular mapping of RsrR, a resistant gene to maize head smut. Euphytica 187:303–311. https://doi.org/10.1007/s10681-012-0747-4

    Article  CAS  Google Scholar 

  39. Lennon J, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ (2016) Identifcation of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci 56(1):209–218

    Article  CAS  Google Scholar 

  40. Zhang X, Yang Q, Rucker E, Thomason W, Balint-Kurti P (2017) Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z mays ssp. parviglumis). Theor Appl Genet 130(6):1285–1295

    Article  CAS  PubMed  Google Scholar 

  41. Wei WH, Zhao WP, Song YC, Liu LH, Guo LQ, Gu MG (2003) Genomic in situ hybridization analysis for identifi cation of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas 138:21–26

    Article  PubMed  Google Scholar 

  42. Nault LR, Findley WR (1981) Zea diploperennis: a primitive relative offers new traits to improve corn

  43. Bergquist RR (1981) Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71(5):518–520

    Article  Google Scholar 

  44. Goodman RM, Hauptli H, Crossway A, Knauf VC (1987) Gene transfer in crop improvement. Science 236(48):54

    Google Scholar 

  45. von Wettberg E, Davis TM, Smýkal P (2020) Corrigendum: editorial: wild plants as source of new crops. Front Plant Sci. https://doi.org/10.3389/fpls.2020.638134

    Article  Google Scholar 

  46. Joshi A, Adhikari S, Singh NK (2021) Mapping genomic regions for red flour beetle (Tribolium castaneum (Herbst)) resistance in teosinte (Zea mays L. subsp. parviglumis HH Iltis & Doebley) derived maize backcross inbred line population. Genetic Res Crop Evol 68(4):1529–44. https://doi.org/10.1007/s10722-020-01083-3

    Article  CAS  Google Scholar 

  47. Throne JE, Eubanks MW (2015) Resistance of tripsacorn-introgressed maize lines to Sitophilus zeamais. J Stored Prod Res 64:62–64. https://doi.org/10.1016/j.jspr.2015.08.006

    Article  Google Scholar 

  48. Shaibu AS, Badu-Apraku B, Ayo-Vaughan MA (2021) Enhancing drought tolerance and Striga hermonthica resistance in maize using newly derived inbred lines from the wild maize relative Zea diploperennis. Agronomy 11(1):177. https://doi.org/10.3390/agronomy11010177

    Article  CAS  Google Scholar 

  49. Guerrero-Corona A, Santacruz Ruvalcaba F, Alberto Sánchez Nuño J, Moya Raygoza G, Ariel Ruiz Corral J, Cruz Larios L (2021) Phenotypic identification of near isogenic maize teosinte lines (Zea spp) involved for resistance to gray leaf spot. Plant Breed. https://doi.org/10.1111/pbr.12929

    Article  Google Scholar 

  50. Adhikari S, Joshi A, Kumar A, Singh NK, Jaiswal JP, Jeena AS, Singh RP, Pandey D (2021) Identification of QTL for banded leaf and sheath blight in teosinte-derived maize population. Agric Res. https://doi.org/10.1007/s40003-021-00567-7

    Article  Google Scholar 

  51. Chang HS, Fan KC (1986) Comparative studies on some biology and pathology of corn and broom corn isolates of Exserohilum turcicum (Pass) Leonard & Suggs. Bot Bull Acad Sin 27:209–218

    Google Scholar 

  52. Pratt RC, Gordon SG (2005) Breeding for resistance to maize foliar pathogens. In: Janick J (ed) Plant breeding reviews. Wiley, Oxford, pp 119–173

    Google Scholar 

  53. Hurni S et al (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci USA 112:8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mubeen S, Rafique M, Munis MFH, Chaudhary HJ (2017) Study of southern corn leaf bligh (SCLB) on maize genotypes and its effect on yield. J Saudi Soc Agric Sci 16:210–217. https://doi.org/10.1016/j.jssas.2015.06.006

    Article  Google Scholar 

  55. Fisher DE, Hooker AL, Lim SM, Smith DR (1976) Leaf infection and yield loss caused by four Helminthosporium leaf diseases of corn. Phytopathology 66:942–944

    Article  Google Scholar 

  56. Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson M, Oropeza-Rosas MA, Holland JB, Szalma SJ (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carson ML, Stuber CW, Senior ML (2004) Identification and mapping of quantitative trait loci conditioning resistance to southern leaf blight of maize caused by Cochliobolus heterostrophus race O. Phytopathology 94:862–867

    Article  CAS  PubMed  Google Scholar 

  58. Aregbesola E, Ortega-Beltran A, Falade T et al (2020) A detached leaf assay to rapidly screen for resistance of maize to Bipolaris maydis, the causal agent of southern corn leaf blight. Eur J Plant Pathol 156:133–145. https://doi.org/10.1007/s10658-019-01870-4

    Article  CAS  Google Scholar 

  59. Crous PW, Groenewald JZ, Groenewald M, Caldwell P, Braun U et al (2006) Species of cercospora associated with grey leaf spot of maize. Stud Mycol. https://doi.org/10.3114/sim.55.1.189

    Article  PubMed  PubMed Central  Google Scholar 

  60. Beckman PM, Payne GA (1982) External growth, penetration, and development of Cercospora zeae-maydis in corn leaves. Phytopathology 72:810–815

    Article  Google Scholar 

  61. Daub M (1982) Cercosporin, a photo-sensitizing toxin from cercospora species. Phytopathology 72(72:370-74):370. https://doi.org/10.1094/Phyto-72-37

    Article  CAS  Google Scholar 

  62. Zhao X, Tan G, Xing Y, Wei L, Chao Q, Zuo W, Lubberstedt T, Xu M (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed 30:1077–1088

    Article  Google Scholar 

  63. Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA et al (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157

    Article  CAS  PubMed  Google Scholar 

  64. Yang Q, Balint-Kurti P, Xu ML (2017) Quantitaive disease resistance: Dissection and adoption in maize. Mol Plant 10:402–413

    Article  CAS  PubMed  Google Scholar 

  65. Yang Q, He Y, Kabuhama M, Chaya T, Kellt A et al (2017) A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat Genet 49:1364–1372

    Article  CAS  PubMed  Google Scholar 

  66. Yang Q, Balint-Kurti P, Xu M (2017) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10(3):402–413. https://doi.org/10.1016/j.molp.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  67. Niks RE, Qi XQ, Marcel TC (2015) Quantitative resistance to biotrophicfilamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu Rev Phytopathol 53:445–470

    Article  CAS  PubMed  Google Scholar 

  68. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  69. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  70. Roux F, Voisin D, Badet T, Balague C, Barlet X, Huard-Chauveau et al (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15:427–432

    Article  PubMed  PubMed Central  Google Scholar 

  71. St Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  CAS  PubMed  Google Scholar 

  72. Rashid Z, Sofi M, Harlapur SI, Kachapur RM, Ahmed Dar Z, Singh PK, Zaidi PH, Vivek BS, Nair SK (2020) Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Nat Sci Rep 10:21949

    CAS  Google Scholar 

  73. PolandBradbury JAPJ, Buckler ES, Nelson RJ (2011) Genome wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci 108:6893–6898

    Article  Google Scholar 

  74. McMullen MD, Simcox KD (1995) Genomic organization of disease and insect resistance genes in maize. Mol Plant Microbe Interact 8:811–815

  75. Ali F, Pan Q, Chen G, Zahid KR, Yan J (2013) Evidence of multiple disease resistance (MDR) and implication of meta-analysis in marker assisted selection. PLoS One 8(7):e68150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N, Wulff BB (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37(2):139–143

    Article  CAS  PubMed  Google Scholar 

  77. Martins LB, Rucker E, Thomason W, Wisser RJ, Holland JB, Balint-Kurti P (2019) Validation and characterization of maize multiple disease resistance QTL. G3: genes. Genomes Genet 9(9):2905–2912

    CAS  Google Scholar 

  78. Kerns MR, Dudley JW, Rufener GK (1999) QTL for resistance to common rust and smut in maize (Zea mays L.). Maydica 44:37–45

    Google Scholar 

  79. Nair SK, Babu, Magorokosho C, Mahuku G, Semagn K, Beyene Y, Das B, Makumbi D, Lava Kumar P, Olsen M, Prasanna B (2015) Fine mapping of Msv1, a major QTL for resistance to maize streak virus leads to development of production markers for breeding pipelines. Theor Appl Genet 128:1839–1854

    Article  CAS  PubMed  Google Scholar 

  80. Ullstrup AJ, Brunson AM (1947) Linkage relationships of a gene in corn determining susceptibility to a Helminthosporium leaf spot. J Am Soc Agron 39:606–609

    Article  Google Scholar 

  81. Hulbert SH (1997) Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol 35:293–310

    Article  CAS  PubMed  Google Scholar 

  82. Sun Q, Collins NC, Ayliffe M, Smith SM, Drake J, Pryor T, Hulbert SH (2001) Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics 158:423–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Saxena KMS, Hooker AL (1974) A study on the structure of gene Rp3 for rust resistance in Zea mays. Can J Genet Cytol 16:857–860

    Article  Google Scholar 

  84. Wu J, Ding J, Du Y, Xu Y, Zhang X (2007) Genetic analysis and molecular mapping of two dominant complementary genes determining resistance to sugarcane mosaic virus in maize. Euphytica 156:355–364

    Article  CAS  Google Scholar 

  85. Xu M, Melchinger A, Xia X, Lu€bberstedt T (1999) High- resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet 261:574–581

    Article  CAS  PubMed  Google Scholar 

  86. Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Frei UK, Wang B, Lai J, Lu€bberstedt T (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J et al (2017) An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant. https://doi.org/10.1016/j.molp.2017.02.002

    Article  PubMed  Google Scholar 

  88. Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J (1994) Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theor Appl Genet 89(4):413–418

  89. Weldekidan T, Hawk JA (1993) Inheritance of Anthracnose stalk rot resistance in maize. Maydica 38:189–192

    Google Scholar 

  90. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  91. Etalo DW, Stulemeijer IJ, Van Esse HP, Vos RC, Bouwmeester HJ, Joosten MH (2013) System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. Plant Physiol 162:1599–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  93. Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant-Microbe Interact 11(10):968–978

  94. Richter TE, Pryor AJ, Bennetzen JL, Hulbert SH (1995) New rust resistance specificities associated with recombination at the Rp1 complex in maize. Genetics 141:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Johal GS, Briggs SP (1992) Reductase activity encoded by the Hm1 disease resistance gene in maize. Science 258:985–987

    Article  CAS  PubMed  Google Scholar 

  96. Yang Q, Balint-Kurti P, Xu M (2017) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10(3):402–413

  97. Gao X et al (2007) Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with Mycotoxin fumonisin. Mol Plant Microbe Interact 20:922–933

    Article  CAS  PubMed  Google Scholar 

  98. Asselin JA, Lin J, Perez-Quintero AL, Gentzel I, Majerczak D, Opiyo SO, Zhao W, Paek SM, Kim MG, Coplin DL, Blakeslee JJ, Mackey D (2015) Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoes stewartii. Plant Physiol 167:1117–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang GF, He Y, Strauch R, Olukolu BA, Nielsen D, Li X, Balint-Kurti PJ (2015) Maize homologs of hydroxycinnamoyltransferase, a key enzyme in lignin biosynthesis, bind the nucleotide binding leucine-rich repeat RpI proteins to modulate the defense response. Plant Physiol 169:2230–2243

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zaw H, Raghavan C, Pocsedio A, Swamy BPM, Jubay ML, Singh RK et al (2019) Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. Sci Rep 9(1):1–11

  101. Pietrusińska A, Czembor JH (2015) Gene pyramiding-a tool commonly used in breeding programs. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin (278):3–16

  102. Steiner B, Michel S, Maccaferri M, Lemmens M, Tuberosa R, Buerstmayr H (2019) Exploring and exploiting the genetic variation of Fusarium head blight resistance for genomic-assisted breeding in the elite durum wheat gene pool. Theor Appl Genet 132:969–988

    Article  CAS  PubMed  Google Scholar 

  103. Pancaldi F, Trindade LM (2020) Marginal lands to grow novel bio-based crops: a plant breeding perspective. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00227

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rana M, Sood A, Hussain W, Kaldate R, Sharma TR, Gill RK, Kumar S, Singh S (2019) Chapter 6—gene pyramiding and multiple character breeding. In: Singh M (ed) Lentils. Academic Press, Cambridge, pp 83–124

    Chapter  Google Scholar 

  105. Azeez MA, Adubi AO, Durodola FA (2018) Landraces and crop genetic improvement. Rediscov Landraces Resour Future. https://doi.org/10.5772/intechopen.75944

    Article  Google Scholar 

  106. Khanna HK, Deo PC (2016) Novel gene transfer technologies. In: Mohandas S, Ravishankar K (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_9

    Chapter  Google Scholar 

  107. Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric For 39(4):515–530

    Article  CAS  Google Scholar 

  108. Rai N, Bellundagi A, Kumar PKC, Kalasapura TR, Rani S, Sinha N, Krishna H, Jain N, Singh GP, Singh PK et al (2018) Marker-assisted backcross breeding for improvement of drought tolerance in bread wheat (Triticum aestivum L. em Thell). Plant Breed 137:514–526

    Article  CAS  Google Scholar 

  109. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14:22499–22528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Cui Y, Patel J, Zou J, Keller WA (2009) Oilseed brassicas. In: Kole C, Hall TC (eds) Compendium transgenic crop plants. Wiley-Blackwell, Hoboken

    Google Scholar 

  111. Dormatey R, Sun C, Ali K, Coulter JA, Bi Z, Bai J (2020) Gene pyramiding for sustainable crop improvement against biotic and abiotic stresses. Agronomy 10(9):1255. https://doi.org/10.3390/agronomy10091255

    Article  CAS  Google Scholar 

  112. Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC (2016) Functional molecular markers for crop improvement. Crit Rev Biotechnol 36:917–930

    Article  CAS  PubMed  Google Scholar 

  113. Wiesner-Hanks T, Nelson R (2016) Multiple disease resistance in plants. Annu Rev Phytopathol 54:229–252

    Article  CAS  PubMed  Google Scholar 

  114. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, Magaji UG, Akos I, Olalekan KK (2019) Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach. Mol Biol Rep 46:1519–1532

    Article  CAS  PubMed  Google Scholar 

  115. Cai J, Wang S, Su Z, Li T, Zhang X, Bai G (2019) Meta-analysis of QTL for Fusarium head blight resistance in Chinese wheat landraces. Crop J 7:784–798

    Article  Google Scholar 

  116. Galiano-Carneiro AL, Miedaner T (2017) Genetics of resistance and pathogenicity in the maize/Setosphaeria turcica pathosystem and implications for breeding. Front Plant Sci 8:1490. https://doi.org/10.3389/fpls.2017.01490

    Article  PubMed  PubMed Central  Google Scholar 

  117. Xu Z, Hua J, Wang F, Cheng Z, Meng Q, Chen Y, Han X, Tie S, Liu C, Li X, Wang Z, Weng J (2020) Marker-assisted selection of qMrdd8 to improve maize resistance to rough dwarf disease. Breed Sci 70(2):183–192. https://doi.org/10.1270/jsbbs.19110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ali F, Yan J (2012) Disease resistance in maize and the role of molecular breeding in defending against global threat. J Integr Plant Biol 54(3):134–151. https://doi.org/10.1111/j.1744-7909.2012.01105.x

    Article  CAS  PubMed  Google Scholar 

  119. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA (2016) Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol 36:353–367

    Article  CAS  PubMed  Google Scholar 

  120. Wang M, Wang S, Xia G (2015) From genome to gene: a new epoch for wheat research? Trends Plant Sci 20:380–387

    Article  PubMed  CAS  Google Scholar 

  121. Yang Q, Zhang D, Xu M (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol 54:228–237

    Article  PubMed  Google Scholar 

  122. Kaler AS, Gillman JD, Beissinger T, Purcell LC (2020) Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front Plant Sci 10:1794. https://doi.org/10.3389/fpls.2019.01794

    Article  PubMed  PubMed Central  Google Scholar 

  123. Francki MG, Walker E, McMullan CJ, Morris WG (2020) Multi-location evaluation of global wheat lines reveal multiple QTL for adult plant resistance to Septoria nodorum blotch (SNB) detected in specific environments and in response to different isolates. Front Plant Sci 11:771

    Article  PubMed  PubMed Central  Google Scholar 

  124. Miedaner T, Boeven ALG-C, Gaikpa DS, Kistner MB, Grote CP (2020) Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize. Int J Mol Sci 21(24):9717. https://doi.org/10.3390/ijms21249717

    Article  CAS  PubMed Central  Google Scholar 

  125. Shi LY, Lv XL, Weng JF, Zhu HY, Liu CL, Hao ZF, Zhou Y, Zhang DG, Li MS, Ci XK, Li XH (2014) Genetic characterization and linkage disequilibrium mapping of resistance to gray leafspot in maize (Zea mays L.). Crop J 2:132–143

    Article  Google Scholar 

  126. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168. https://doi.org/10.1038/ng.747

    Article  CAS  PubMed  Google Scholar 

  127. Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Article  Google Scholar 

  128. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. G38: Genes|Genomes|Genetics 3(2):197–203. https://doi.org/10.1534/g3.112.004630

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zila CT, Ogut F, Romay MC, Gardner CA, Buckler ES, Holland JB (2014) Genome-wide association study of Fusarium ear rot disease in the U.S.A maize inbred line collection. BMC Plant Biol. https://doi.org/10.1186/s12870-014-0372-6

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen MS, Bright JM, Beyene Y, Prasanna BM (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet 128(10):1957–1968. https://doi.org/10.1007/s00122-015-2559-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dos Santos JPR, Pires LPM, de Castro Vasconcellos RC, Pereira GS, Von Pinho RG, Balestre M (2016) Genomic selection to resistance to Stenocarpella maydis in maize lines using DArTseq markers. BMC Genetics. https://doi.org/10.1186/s12863-016-0392-3

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gaikpa DS, Kessel B, Presterl T et al (2021) Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. Theor Appl Genet 134:793–805. https://doi.org/10.1007/s00122-020-03731-9

    Article  CAS  PubMed  Google Scholar 

  134. Gage JL, Monier B, Giri A, Buckler ES (2020) Ten years of the maize nested association mapping population: impact, limitations, and future directions. Plant Cell 32(7):2083–2093. https://doi.org/10.1105/tpc.19.00951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551. https://doi.org/10.1534/genetics.107.074245

    Article  PubMed  PubMed Central  Google Scholar 

  136. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C et al (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  PubMed  Google Scholar 

  137. Pascual L, Desplat N, Huang BE et al (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J 13:565–577. https://doi.org/10.1111/pbi.12282

    Article  CAS  PubMed  Google Scholar 

  138. Huang BE, Verbyla KL, Verbyla AP et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genetics 128:999–1017. https://doi.org/10.1007/s00122-015-2506-0

    Article  Google Scholar 

  139. Jiménez-Galindo JC, Malvar RA, Butrón A et al (2019) Mapping of resistance to corn borers in a MAGIC population of maize. BMC Plant Biol 19:431. https://doi.org/10.1186/s12870-019-2052-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Imran Arshad HM, Hameed MK, Khan MS, Joyia FA (2019) Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci 20(16):4045

    Article  CAS  PubMed Central  Google Scholar 

  141. Schenke D, Cai D (2020) Applications of CRISPR/Cas to improve crop disease resistance–beyond inactivation of susceptibility factors. Iscience. https://doi.org/10.1016/j.isci.2020.101478

    Article  PubMed  PubMed Central  Google Scholar 

  142. Nuccio ML, Claeys H, Heyndrickx KS (2021) CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products. Mol Breeding 41(2):1–19

    Article  Google Scholar 

  143. Lu X, Liu J, Ren W, Yang Q, Chai Z, Chen R, Wang L, Zhao J, Lang Z, Wang H (2018) Gene-indexed mutations in maize. Mol Plant 11(3):496–504

    Article  CAS  PubMed  Google Scholar 

  144. McCarty DR, Mark Settles A, Suzuki M, Tan BC, Latshaw S, Porch T, Robin K, Baier J, Avigne W, Lai J (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44(1):52–61

    Article  CAS  PubMed  Google Scholar 

  145. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7(1):1–7

    Article  CAS  Google Scholar 

  146. Doll NM, Gilles LM, Gérentes M-F, Richard C, Just J, Fierlej Y, Borrelli VM, Gendrot G, Ingram GC, Rogowsky PM (2019) Single and multiple gene knockouts by CRISPR–Cas9 in maize. Plant Cell Rep 38(4):487–501

    Article  CAS  PubMed  Google Scholar 

  147. Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16(1):1–8

    Article  CAS  Google Scholar 

  148. Zhang Q, Zhang Y, Lu M-H, Chai Y-P, Jiang Y-Y, Zhou Y, Wang X-C, Chen Q-J (2019) A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol 181(4):1441–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gao H, Mutti J, Young JK, Yang M, Schroder M, Lenderts B, Wang L, Peterson D, St Clair G, Jones S (2020) Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Front Plant Sci 11:535

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schwartz C, Lenderts B, Feigenbutz L, Barone P, Llaca V, Fengler K, Svitashev S (2020) CRISPR–Cas9-mediated 755-Mb inversion in maize. Nat Plants 6(12):1427–1431

    Article  CAS  PubMed  Google Scholar 

  151. Nault LR, Gordon DT, Damsteegt VD, Iltis HH (1982) Response of annual and perennial teosintes (Zea) to six maize viruses. Plant Dis 66:61–62

    Article  Google Scholar 

  152. Findley WR, Nault LR, Styer WE, Gordon DT (1983) Inheritance of maize chlorotic dwarf virus resistance in maize × Zea diploperennis backcrosses. Maize Newsl 56:165–166

    Google Scholar 

  153. Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: What can they contribute toward increased crop productivity? Proc Natl Acad Sci 96(11):5937–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ramirez DA (1997) Gene introgression in maize (Zea mays ssp. mays L.). Philipp J Crop Sci 22:51–63

    Google Scholar 

  155. Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ (2017) Identification of teosinte alleles for resistance to southern leaf blight in near isogenic maize lines. Crop Sci 57(4):1973–1983

    Article  Google Scholar 

  156. Zhang L, Peek AS, Dunams D, Gaut BS (2002) Population genetics of duplicated disease-defense genes, hm1 and hm2, in maize (Zea mays ssp. mays L.) and its wild ancestor (Zea mays ssp. parviglumis). Genetics 162(2):851–860. https://doi.org/10.1093/genetics/162.2.851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang L, Gao J, Zhang Y, Tian J, Sun Y, Wang C (2020) RNA-Seq identification of candidate defense genes by analyzing Mythimna separata feeding-damage induced systemic resistance in balsas teosinte. Pest Manag Sci 76(1):333–342. https://doi.org/10.1002/ps.5519

    Article  CAS  PubMed  Google Scholar 

  158. Szczepaniec A, Widney SE, Bernal JS, Eubanks MD (2013) Higher expression of induced defenses in teosintes (Zea spp) is correlated with greater resistance to fall armyworm, S podoptera frugiperda. Entomologia Experimentalis et Applicata 146(2):242–251. https://doi.org/10.1111/eea.12014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to Shabir Hussain Wani.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, S.H., Samantara, K., Razzaq, A. et al. Back to the wild: mining maize (Zea mays L.) disease resistance using advanced breeding tools. Mol Biol Rep 49, 5787–5803 (2022). https://doi.org/10.1007/s11033-021-06815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06815-x

Keywords

Navigation