Skip to main content

Resistance to Biotic Stress: Theory and Applications in Maize Breeding

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Cereal Crops

Abstract

By virtue of its higher genetic diversity, maize has better adaptability to various climatic situations and has high yield potential than other cereals. However, the incidence of pests and diseases at different stages of the crop can reduce the yield drastically. Several strategies have been adopted to manage biotic stresses in maize to maintain the yielding ability. Apart from the chemical method of disease management, improving the crop for natural resistance has paid much dividend for sustainable maize production. With the advent of high throughput phenotyping method followed by genotyping, targeted trait improvement has become easy. Molecular marker technology—a non-destructive method—enables indirect selection of genotypes without exposing them to epiphytotic condition. This has been found to be efficient over existing traditional methods of screening followed by selection. The information on QTLs, novel genomic resources have provided better understanding of tolerance traits. Although GE technologies have been successful in development of genotypes to combat pathogens in important crops, they are not yet fully exploited for the management of insect pests. The most important limitation has been the lack availability of target genes at present against the insect pests. Genome editing is becoming powerful tool which enables the possibilities of developing resistant gene by targeted gene modification. Though maize is recalcitrant to regeneration, protoplast transient assay made easy the utilization of CRISPR technology in developing disease resistant maize. Institutional support followed by policy intervention makes new technological interventions finding way for improving crops. Social beliefs and ethical issues should be taken care while targeting next generation breeding approaches to develop insect or disease resistant maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acquaah G (2015) Conventional plant breeding principles and techniques. In: Acquaah G (ed) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, Switzerland, pp 115–158

    Chapter  Google Scholar 

  • Akinbode OA (2010) Evaluation of antifungal efficacy of some plant extracts on Curvularia lunata, the causal organism of maize leaf spot. African J Environ Sci Tech 4(11):797–800

    Google Scholar 

  • Ako M, Schulthess F, Gumedzoe MY, Cardwell, KF (2003) The effect of Fusarium verticillioides on oviposition behaviour and bionomics of lepidopteran and coleopteran pests attacking the stem and cobs of maize in West Africa Entomologia Experimentalis et Applicata 106(3):201–210

    Google Scholar 

  • Al Eryan MA, El Tabbakh SS (2004) Forecasting yield of corn, Zea mays infested with corn leaf aphid, Rhopalosiphum maidis. J Appl Entomo 128(4):312–315

    Google Scholar 

  • Aldrich HE, Fiol CM (1994) Fools rush in? The institutional context of industry creation. Acad Manag Rev 19:645–670

    Article  Google Scholar 

  • Ali F, Yan J (2012) Disease resistance in maize and the role of molecular breeding in defending against global threat. J Integrat Plant Bio 54(3):134–151

    Article  CAS  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M et al (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Bio 16(1):238–242

    Article  CAS  Google Scholar 

  • Allen A, Islamovic E, Kaur J, Gold S, Shah D et al (2011) Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotech J 9(8):857–864

    Article  CAS  Google Scholar 

  • Archana R, Lohithaswa HC, Pavan R (2019) Genetic analysis of Fusarium stalk rot resistance in maize (Zea mays L.). J Pharmacog Phytochem 19:58–61

    Google Scholar 

  • Arnason JT, Baum B, Gale J, Lambert JD, Bergvinson D et al (1993) Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica 74(3):227–236

    Article  Google Scholar 

  • Awata LAO, Ifie BE, Tongoona P, Danquah E, Jumbo MB et al (2019) Maize lethal necrosis and the molecular basis of variability in concentrations of the causal viruses in co-infected maize plant. J Genet Mol Virol 9(1):1–19

    Article  Google Scholar 

  • Ayiga Aluba J, Edema R, Tusiime G, Asea G, Gibson P (2015) Response to two cycles of S1 recurrent selection for turcicum leaf blight in an open pollinated maize variety population. Adv Appl Sci Res 6(12):4–12

    Google Scholar 

  • Badu Apraku B, Fakorede MAB (2017) Breeding for disease resistance in maize. Advances in genetic enhancement of early and extra-early maize for Sub-Saharan Africa. Springer, Cham, Switzerland, pp 379–410

    Chapter  Google Scholar 

  • Balconi C, Stevanato P, Motto M, Biancardi E (2012) Breeding for biotic stress resistance/tolerance in plants. In: Balconi C (eds) Crop production for agril improve. Springer, Dordrecht, pp 57–114

    Google Scholar 

  • Balint Kurti PJ, Carson ML (2006) Analysis of quantitative trait loci for resistance to southern leaf blight in juvenile maize. Phytopathology 96(3):221–225

    Google Scholar 

  • Balint Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza Rosas MA et al (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176(1):645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balint Kurti GG, Zou S, Brown A (2008) Optimal control theory for manipulating molecular processes. Adv Chem Phy 138:43–94

    CAS  Google Scholar 

  • Balint Kurti PJ, Yang J, Van Esbroeck G, Jung J, Smith ME (2010) Use of a maize advanced intercross line for mapping of QTL for northern leaf blight resistance and multiple disease resistance. Crop Sci 50(2):458–466

    Article  Google Scholar 

  • Baumgarte S, Tebbe CC (2005) Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol 14(8):2539–2551

    Article  CAS  PubMed  Google Scholar 

  • Berger HK (2001) The western corn rootworm (Diabrotica virgifera virgifera): a new maize pest threatening Europe. EPPO Bull 31(3):411–414

    Article  Google Scholar 

  • Bergquist RR (1979) Selection for disease resistance in a maize breeding programme. II. Introgression of an alien genome from Tripsacum dactyloides conditioning resistance in Zea mays. In: Proceedings of the tenth meeting of the Maize and Sorghum Section of Eucarpia, 17–19 Sept 1979, Varna Bulgaria, pp 200–206

    Google Scholar 

  • Bergquist RR (1981) Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71(5):518–520

    Article  Google Scholar 

  • Bergvinson DJ, Arnason JT, Mihm JA, Jewell DC (1994) Phytochemical basis for multiple borer resistance in maize. In: Mihm JA (ed) Insect resistant maize: recent advances and utilization; Proceedings of an International Symposium Held at the International Maize and Wheat Improvement Center (CIMMYT), 27 Nov–3 Dec 1994 CIMMYT27, pp 82–90

    Google Scholar 

  • Bhat JS, Mukri G, Patil BS (2017) Turcicum leaf blight resistance in maize: field screening of new inbreeds and hybrids. Int J Adv Res Sci Eng 6(9):141–149

    Google Scholar 

  • Biffen RH (1905) Mendel’s laws of inheritance and wheat breeding. J Agril Sci 1(1):4–48

    Article  Google Scholar 

  • Bock CH, Jeger MJ, Mughogho LK, Cardwell KF, Mtisi E et al (2000) Variability of Peronosclerospora sorghi isolates from different geographic locations and hosts in Africa. Mycol Res 104(1):61–68

    Article  Google Scholar 

  • Bohn M, Kreps RC, Klein D, Melchinger AE (1999) Damage and grain yield losses caused by European corn borer (Lepidoptera: Pyralidae) in early maturing European maize hybrids. J Econ Entomol 92(3):723–731

    Article  Google Scholar 

  • Borel B (2017) When the pesticides run out. Nature 543:302–304

    Article  CAS  PubMed  Google Scholar 

  • Botha AM, Venter E (2000) Molecular marker technology linked to pest and pathogen resistance in wheat breeding. South African J Sci 96(5):233–240

    Google Scholar 

  • Brooks TD, Shaun Bushman B, Paul Williams W, McMullen MD, Buckley PM (2007) Genetic basis of resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf-feeding damage in maize. J of Econ Entomol 100(4):1470–1475

    Article  CAS  Google Scholar 

  • Brutnell TP (2002) Transposon tagging in maize. Funct Integrat Genom 2(1–2):4–12

    Article  CAS  Google Scholar 

  • Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77(3):213–218

    Article  CAS  PubMed  Google Scholar 

  • Bukowski R, Guo X, Lu Y, Zou C, He B et al (2018) Construction of the third-generation Zea mays haplotype map. Gigascience 7(4):1–12

    Article  PubMed  Google Scholar 

  • Buzatto D, de Castro França S, Zingaretti SM (2016) CryGetter: a tool to automate retrieval and analysis of Cry protein data. BMC Bioinfo 17(1):1–14

    Article  CAS  Google Scholar 

  • Carson ML, Stuber CW, Senior ML (2004) Identification and mapping of quantitative trait loci conditioning resistance to southern leaf blight of maize caused by Cochliobolus heterostrophus race O. Phytopathology 94(8):862–867

    Article  CAS  PubMed  Google Scholar 

  • Casela CR, Ferreira AS (2002) Variability in isolates of Puccinia polysora in Brazil. Fitopatologia Brasileira 27(4):414–416

    Article  Google Scholar 

  • Castagnola AS, Jurat Fuentes JL (2012) Bt crops: past and future. In: Castagnola AS (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, pp 283–304

    Google Scholar 

  • Chang MS, Hudon M, Devaux A (1990) Inheritance of resistance to Kabatielle eyespot of maize. Phytoprotection 71(3):107–112

    Article  Google Scholar 

  • Chavan S, Smith SM (2014) A rapid and efficient method for assessing pathogenicity of Ustilago maydis on maize and teosinte lines. J Visual Exp 83:

    Google Scholar 

  • Chen G, Wang X, Hao J, Yan J, Ding J (2015) Genome-wide association implicates candidate genes conferring resistance to maize rough dwarf disease in maize. PLoS ONE 10(11):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Shrestha R, Ding J, Zheng H, Mu C et al (2016) Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. Genes, Genomes, Genet 6(12):3803–3815

    CAS  Google Scholar 

  • Chiang HC, Hodson AC (1950) Stalk breakage caused by European corn borer and its effect on the harvesting of field corn. J Econ Entomol 43(4):415–422

    Article  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J et al (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11(7):1365–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connors CH (1922) Inheritance of foliar glands of the peach. Proc Am Soc Hort Sci 18:20–26

    Google Scholar 

  • Cordero MJ, Raventós D, San Segundo B (1994) Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection: systemic wound-response of a monocot gene. Plant J 6(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Costa RV, Simon J, Cota LV, da Silva DD, de Almeida REM et al (2019) Perdas na produtividade de milho safrinha em razão de podridões da base do colmo. Pesquisa Agropecuária Brasileira 54(X):283–290

    Google Scholar 

  • Crous PW, Liebenberg MM, Braun U, Groenewald JZ (2006) Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Studies Mycol 55:163–173

    Article  Google Scholar 

  • Degani O, Dor S, Movshowitz D, Fraidman E, Rabinovitz O (2018) Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field. PLoS ONE 13(12):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi B, Thakur BR (2018) Integrated management of banded leaf and sheath blight of maize caused by Rhizoctonia solani f. sp. sasakii. Proc Natl Acad Sci, India Section B: Bio Sci 88(2):769–777

    Google Scholar 

  • Dey U, Harlapur SI, Dhutraj DN, Suryawanshi AP, Bhattacharjee R (2015) Integrated disease management strategy of common rust of maize incited by Puccinia sorghi Schw. African J Microbio Res 9(20):1345–1351

    Article  CAS  Google Scholar 

  • Dhami NB, Kim SK, Paudel A, Shrestha J, Rijal TR (2015) A review on threat of gray leaf spot disease of maize in Asia. J Maize Res Dev 1(1):71–85

    Article  Google Scholar 

  • Dhillon BS, Vasal SK, Prasanna BM (2002) In: VL Chopra and Prakash S (eds) Evolution and adaptation of cereal crops. Oxford & IBH, New Delhi, pp 99–133

    Google Scholar 

  • Ding J, Ali F, Chen G, Li H, Mahuku G et al (2015) Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Bio 15(1):206

    Article  CAS  Google Scholar 

  • Doebley J, Wang RL (1997) Genetics and the evolution of plant form: an example from maize. In: Doebley J (ed) Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Labor Press 62:361–367

    Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:6213

    Article  CAS  Google Scholar 

  • Dovas CI, Eythymiou K, Katis NI (2004) First report of maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Pathol 53(2):238

    Google Scholar 

  • Dowd PF, Zuo WN, Gillikin JW, Johnson ET, Boston RS (2003) Enhanced resistance to Helicoverpa zea in tobacco expressing an activated form of maize ribosome-inactivating protein. J Agril Food Chem 51(12):3568–3574

    Article  CAS  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ et al (2001) Implementation of markers in Australian wheat breeding. Australian J Agril Res 52(12):1349–1356

    Article  CAS  Google Scholar 

  • Elsik CG, Tayal A, Unni DR, Nguyen HN, Gardiner J et al (2018) MaizeMine: a data mining warehouse for MaizeGDB. In: Plant and animal genome XXVI conference, Jan 13–17

    Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2009) Applications of linkage disequilibrium and association mapping in maize. Molecular genetic approaches to maize improvement. Springer, Berlin, Heidelberg, pp 173–195

    Chapter  Google Scholar 

  • Ertiro BT, Semagn K, Das B, Olsen M, Labuschagne M et al (2017) Genetic variation and population structure of maize inbred lines adapted to the mid-altitude sub-humid maize agro-ecology of Ethiopia using single nucleotide polymorphic (SNP) markers. BMC Genomics 18(1):1–11

    Google Scholar 

  • Faluyi JO, Olorode O (1984) Inheritance of resistance to Helminthosporium maydis blight in maize (Zea mays L.). Theor Appl Genet 67(4):341–344

    Google Scholar 

  • FAO (2020) http://www.fao.org/3/ca8032en/ca8032en.pdf

  • Farfan IDB, Gerald N, Murray SC, Isakeit T, Huang PC et al (2015) Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS ONE 10(2):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias Rivera LA, Hernandez Mendoza JL, Molina Ochoa J, Pescador Rubio A (2003) Effect of leaf extracts of teosinte, Zea diploperennis L., and a Mexican maize variety, criollo ‘uruapeño’, on the growth and survival of the fall armyworm (Lepidoptera: Noctuidae). Florida Entomol 86(3):239–243

    Google Scholar 

  • Ferguson LM, Carson ML (2007) Temporal variation in Setosphaeria turcica between 1974 and 1994 and origin of races 1, 23, and 23 N in the United States. Phytopathology 97(11):1501–1511

    Article  CAS  PubMed  Google Scholar 

  • Findley WR, Nault LR, Styer WE, Gordon DT (1982) Inheritance of maize chlorotic dwarf virus resistance in maize × Zeadiploperennis backcrosses. Maize News Lett 56:165–166

    Google Scholar 

  • Flor HH (1946) Genetics of pathogenicity in Melampsora lini. J Agric Res 73:335–357

    Google Scholar 

  • Frey TJ (2005) Fine-mapping, cloning, verification, and fitness evaluation of a QTL, Rcg1, which confers resistance to Colletotrichum graminicola in maize. PhD dissertation, University of Delaware

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Cheng Y, Linghu J, Yang X, Kang L et al (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Commun 4(1):1–12

    Article  CAS  Google Scholar 

  • Gamliel A, Katan J (1993) Suppression of major and minor pathogens by fluorescent pseudomonads. Phytopathology 83:68–75

    Google Scholar 

  • Gao X, Brodhagen M, Isakeit T, Brown SH, Göbel C et al (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact 22(2):222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Kawabe M, Tsukamoto T, Hanada H, Tao R (2010) Somatic embryogenesis and Agrobacterium-mediated transformation of Japanese apricot (Prunus mume) using immature cotyledons. Scientia Horti 124(3):360–367

    Google Scholar 

  • Gassmann AJ, Shrestha RB, Kropf AL, St Clair CR, Brenizer BD (2020) Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. Pest Manage Sci 76(1):268–276

    Article  CAS  Google Scholar 

  • Geiringer H (1944) On the probability theory of linkage in Mendelian heredity. Ann Math Stat 15(1):25–57

    Article  Google Scholar 

  • Gilbert MK, Majumdar R, Rajasekaran K, Chen ZY, Wei Q et al (2018) RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta 247(6):1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Gogoi R, Bisht S, Mathuria RC, Venkatesh I (2018) Biological control of maize diseases. In: Singh D, Chakraborty BN, Pandey RN, Sharma P (eds) Biological control of crop diseases: recent advances & perspectives, Part 2: Cereals, pulses, oilseeds and other crops. Indian Phytopathological Society. Today & Tomorrow’s Printers and Publishers, New Delhi, pp 479–499

    Google Scholar 

  • Goldberg KB, Brakke MK (1987) Concentration of maize chlorotic mottle virus increased in mixed infections with maize dwarf mosaic virus, strain B. Phytopathology 77(2):162–167

    Article  Google Scholar 

  • Gowda M, Das B, Makumbi D, Babu R, Semagn K et al (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet 128(10):1957–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Bio 419(1):64–77

    Article  CAS  Google Scholar 

  • Groth JV, Zeyen RJ, Davis DW, Christ BJ (1983) Yield and quality losses caused by common rust (Puccinia sorghi Schw.) in sweet corn (Zea mays) hybrids. Crop Protect 2(1):105–111

    Google Scholar 

  • Guthrie WD (1989) Breeding for insect resistance in maize. Plant Breed Rev 6:209–243

    Google Scholar 

  • Hall JK, Martin MJ (2005) Disruptive technologies, stakeholders and the innovation value-added chain: a framework for evaluating radical technology development. R&D Manag 35(3):273–284

    Article  Google Scholar 

  • Hamburger DJ (2018) Normative criteria and their inclusion in a regulatory framework for new plant varieties derived from genome editing. Front Bioeng Biotechnol 6:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Harlan JR, de Wet JM (1971) Toward a rational classification of cultivated plants. Taxon 20(4):509–517

    Article  Google Scholar 

  • Hebbar KP, Davey AG, Merrin J, Dart PJ (1992) Rhizobacteria of maize antagonistic to Fusarium moniliforme, a soil-borne fungal pathogen: colonization of rhizosphere and roots. Soil Bio Biochem 24(10):989–997

    Article  Google Scholar 

  • Hedin PA, Davis FM, Williams WP (1993) 2-hydroxy-4, 7-dimethoxy-1, 4-benzoxazin-3-one (N-O-Me-DIMBOA), a possible toxic factor in corn to the southwestern corn borer. J chem Eco 19(3):531–542

    Article  CAS  Google Scholar 

  • Hellmich RL, Hellmich KA (2012) Use and impact of Bt maize. Nature Edu Knowl 3(10):4

    Google Scholar 

  • Hibbard BE, Clark TL, Ellersieck MR, Meihls LN, El Khishen AA et al (2010) Mortality of western corn rootworm larvae on MIR604 transgenic maize roots: field survivorship has no significant impact on survivorship of F1 progeny on MIR604. J Econ Entomol 103(6):2187–2196

    Article  PubMed  Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G et al (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26(1):121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I et al (2016) Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell 28(11):2700–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B et al (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Nat Acad Sci 96(11):5937–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooda KS, Sekhar JC, Chikkappa G, Kumar S, Pandurange KT et al (2012) Identifying sources of multiple disease resistance in maize. Maize J 1:82–84

    Google Scholar 

  • Hooda R, Bhardwaj NK, Singh P (2015) Screening and identification of ligninolytic bacteria for the treatment of pulp and paper mill effluent. Water Air Soil Pollut 226(9):1–11

    Article  CAS  Google Scholar 

  • Hooker AL (1972) Southern leaf blight of corn—present status and future prospects. J Environ Qual 1(3):244–249

    Article  Google Scholar 

  • Horn F, Habekuß A, Stich B (2014) Genes involved in barley yellow dwarf virus resistance of maize. Theor Appl Genet 127(12):2575–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T et al (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Nat Acad Sci 112(28):8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Ghaffar A, Aslam M (1990) Biological control of Macrophomina phaseolina charcoal rot of sunflower and mung bean. J Phytopathol 130(2):157–160

    Article  Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW et al (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330(6001):222–225

    Article  CAS  PubMed  Google Scholar 

  • Ibraheem F, Gaffoor I, Tan Q, Shyu CR, Chopra S (2015) A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize. Molecules 20(2):2388–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igawa T, Takahashi Ando N, Ochiai N, Ohsato S, Shimizu T et al (2007) Reduced contamination by the Fusarium mycotoxin zearalenone in maize kernels through genetic modification with a detoxification gene. Appl Env Microbio 73(5):1622–1629

    Article  CAS  Google Scholar 

  • Isakeit T, Jaster J (2005) Texas has a new pathotype of Peronosclerospora sorghi, the cause of sorghum downy mildew. Plant Dis 89(5):529–529

    Google Scholar 

  • Jalali SK, Yadavalli L, Ojha R, Kumar P, Sulaikhabeevi SB et al (2014) Baseline sensitivity of maize borers in India to the Bacillus thuringiensis insecticidal proteins Cry1A.105 and Cry2Ab2. Pest Manage Sci 71(8):1082–90

    Google Scholar 

  • Jamann TM, Poland JA, Kolkman JM, Smith LG, Nelson RJ (2014) Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics 198(1):333–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamann TM, Luo X, Morales L, Kolkman JM, Chung CL et al (2016) A remorin gene is implicated in quantitative disease resistance in maize. Theor Appl Genet 129(3):591–602

    Article  CAS  PubMed  Google Scholar 

  • Jampatong C, McMullen MD, Barry BD, Darrah LL, Byrne PF et al (2002) Quantitative trait loci for first-and second-generation European corn borer resistance derived from the maize inbred Mo47. Crop Sci 42(2):584–593

    CAS  Google Scholar 

  • Jin M, Liu H, He C, Fu J, Xiao Y et al (2016) Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci Rep 6:18936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258(5084):985–987

    Article  CAS  PubMed  Google Scholar 

  • Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP et al (2017) Genome editing in plants: an overview of tools and applications. Int J Agron

    Google Scholar 

  • Karaköy T, Baloch FS, Toklu F, Özkan H (2014) Variation for selected morphological and quality-related traits among 178 faba bean landraces collected from Turkey. Plant Genetic Res 12(1):5–11

    Article  Google Scholar 

  • Kaur H, Singh S, Grewal MS (2014) Effect of nitrogen levels on foliar and stalk rot diseases of Kharif maize. J Res 51(2):142–145

    Google Scholar 

  • Kaur H, Kumar S, Hooda KS, Gogoi R, Bagaria P et al (2020) Leaf stripping: an alternative strategy to manage banded leaf and sheath blight of maize. Indian Phytopathol 73:203–211

    Article  Google Scholar 

  • Kenneth R (1970) Downy mildews of Gramineae in Israel. Indian Phytopathol 23:371–377

    Google Scholar 

  • Kfir R, Overholt WA, Khan ZR, Polaszek A (2002) Biology and management of economically important lepidopteran cereal stem borers in Africa. Ann Rev Entomol 47(1):701–731

    Article  CAS  Google Scholar 

  • Khatabi B, Gharechahi J, Ghaffari MR, Liu D, Haynes PA et al (2019) Plant-microbe symbiosis: what has proteomics taught us? Proteomics 19(16):1800105

    Article  CAS  Google Scholar 

  • Khedekar SA, Harlapur SI, Shripad K, Benagi VI, Deshpande VK (2010) Integrated management of turcicum leaf blight of maize caused by Exserohilum turcicum (Pass.) Leonard and Suggs. Karnataka J Agril Sci 23(2):372–373

    Google Scholar 

  • Khokhar MK, Sharma SS, Gupta R (2014) Integrated management of post flowering stalk rot of maize caused by Fusarium verticillioides. Indian Phytopathol 67(3):228–233

    Google Scholar 

  • Kim HC, Kim KH, Song K, Kim JY, Lee BM (2020) Identification and validation of candidate genes conferring resistance to downy mildew in maize (Zea mays L.). Genes 11(2):1–20

    Google Scholar 

  • Kloeppe JW, Rodriguez Kabana R, Zehnder AW, Murphy JF, Sikora E et al (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathol 28(1):21–26

    Article  Google Scholar 

  • Koziel MG, Beland GL, BowmanC Carozzi NB, Crenshaw R et al (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11(2):194–200

    CAS  Google Scholar 

  • Kumar H (2002) Resistance in maize to the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J Stored Prod Res 38(3):267–280

    Article  Google Scholar 

  • Kumar S, Rani A, Jha MM (2009) Evaluation of plant extracts for management of maydis leaf blight of maize. Ann Plant Protect Sci 17(1):130–132

    Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa RDNF, Vivas M, Amaral ATD, Ribeiro RM, Miranda SB et al (2018) Popcorn germplasm resistance to fungal diseases caused by Exserohilum turcicum and Bipolaris maydis. Bragantia 77(1):36–47

    Article  CAS  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42(11):1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lal BB, Chakravarti BP (1976) Assessment of loss due to brown spot of maize caused by Physoderma maydis. Indian Phytopathol 29(4):449–450

    Google Scholar 

  • Lassoued R, Smyth SJ, Phillips PW, Hesseln H (2018) Regulatory uncertainty around new breeding techniques. Front Plant Sci 9:1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Lassoued R, Macall DM, Hesseln H, Phillips PW, Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgen Res 28(2):247–256

    Article  CAS  Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M et al (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Bio 48(5–6):453–461

    Article  CAS  Google Scholar 

  • Leonard KJ, Levy Y, Smith DR (1989) Proposed nomenclature for pathogenic races of Exserohilum turcicum on corn. Plant Dis 73(9):776–777

    Google Scholar 

  • Lewontin RC, Kojima KI (1960) The evolutionary dynamics of complex polymorphisms. Evolution:458–472

    Google Scholar 

  • Li H, Peng Z, Yang X, Wang W, Fu J et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Li N, Lin B, Wang H, Li X, Yang F et al (2019) Natural variation in Zm FBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 51(10):1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Jiang Y, Zeng J, Ji G, Liu L et al (2016) Analysis of the main occurrence characteristics and causes of the southern corn rust in China in 2015. China Plant Prot 36:44–47

    Google Scholar 

  • Liu Q, Liu H, Gong Y, Tao Y, Jiang L et al (2017) An atypical thioredoxin imparts early resistance to Sugarcane mosaic virus in maize. Mol Plant 10(3):483–497

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zheng J, Yu Y, Ye W, Peng D et al (2020) BtToxin_Digger: a comprehensive and high-throughput pipeline for mining toxin protein genes from Bacillus thuringiensis. https://doi.org/10.1101/2020.05.26.114520

  • Lu X, Liu J, Ren W, Yang Q, Chai Z et al (2018) Gene-indexed mutations in maize. Mol Plant 11(3):496–504

    Article  CAS  PubMed  Google Scholar 

  • Ott O (2009) The search for novel resistance alleles: screening teosinte-maize introgression lines for resistance to northern leaf blight. PhD Thesis, Cornell University, NY, USA

    Google Scholar 

  • Mahuku G, Chen J, Shrestha R, Narro LA, Guerrero KVO et al (2016) Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. Theor Appl Genet 129(6):1217–1229

    Article  CAS  PubMed  Google Scholar 

  • Mammadov J, Sun X, Gao Y, Ochsenfeld C, Bakker E et al (2015) Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). BMC Genomics 16(1):916

    Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY et al (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Manjunatha C, Gogoi R, Singh B, Jeevan B, Rai SN et al (2019) Phenotypic and physiological characterization of maize inbred lines resistant and susceptible to maydis leaf blight. Indian Phytopathol 72(2):217–224

    Article  Google Scholar 

  • Martins LB, Rucker E, Thomason W, Wisser RJ, Holland JB et al (2019) Validation and characterization of maize multiple disease resistance QTL. Genes Genomes Genet 9(9):2905–2912

    CAS  Google Scholar 

  • Masanga JO, Matheka JM, Omer RA, Ommeh SC, Monda EO et al (2015) Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Plant Cell Rep 34(8):1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea–variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104(2–3):436–450

    Article  CAS  PubMed  Google Scholar 

  • McCarty DR, Mark Settles A, Suzuki M, Tan BC, Latshaw S et al (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • McMullen MD, Simcox KD (1995) Genomic organization of disease and insect resistance genes in maize. Mol Plant Microbe Interact 8:811–815

    Article  CAS  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H et al (2009) Genetic properties of the maize nested association mapping population. Science 325(5941):737–740

    Article  CAS  PubMed  Google Scholar 

  • Meena RL, Rathore RS, Mathur K (2003) Efficacy of biocontrol agents against Rhizoctonia solani f. sp. sasakii causing banded leaf and sheath blight of maize. J Mycol Plant Pathol 33(2):310–312

    Google Scholar 

  • Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Bio 6(4):397–404

    Article  Google Scholar 

  • Mihm JA (1985) Breeding for host plant resistance to maize stem-borers. Int J Trop Insect Sci 6(3):369–377

    Article  Google Scholar 

  • Mihm JA (1997) Insect resistant maize: recent advances and utilization. In: Proceedings of an international symposium held at the international maize and wheat improvement center (CIMMYT), 27 Nov-3 Dec CIMMYT

    Google Scholar 

  • Mugo SN, Bergvinson D, Hoisington D (2001) Options in developing stemborer-resistant maize: CIMMYT’s approaches and experiences. Int J Trop Insect Sci 21(4):409–415

    Article  Google Scholar 

  • Murenga M, Derera JD, Mugo S, Tongoona P (2018) A review of genetic analysis and response to selection for resistance to Busseola fusca and Chilo partellus, stem borers in tropical maize germplasm: a Kenyan perspective. Maydica 61(1):1–11

    Google Scholar 

  • Murry LE, Elliott LG, Capitant SA, West JA, Hanson KK et al (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Biotechnology 11(12):1559–1564

    CAS  PubMed  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7(1):1–6

    Article  CAS  Google Scholar 

  • Njuguna JGM (2001) Combating head smut of maize caused by Sporisorium reilianum through resistance breeding. In: Seventh Eastern and Southern Africa regional Maize conference, pp 110–112

    Google Scholar 

  • Olukolu BA, Negeri A, Dhawan R, Venkata BP, Sharma P et al (2013) A connected set of genes associated with programmed cell death implicated in controlling the hypersensitive response in maize. Genetics 193(2):609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olukolu BA, Wang GF, Vontimitta V, Venkata BP, Marla S et al (2014) A genome-wide association study of the maize hypersensitive defense response identifies genes that cluster in related pathways. PLoS Genet 10(8):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordas B, Malvar RA, Santiago R, Sandoya G, Romay MC et al (2009) Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 × Mo17 (IBM) population of maize. Theor Appl Genet 119(8):1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Ortega A, de Leon C (1974) Maize insects and diseases. In: Proceedings World-wide maize improvement in the 70’s and the role for CIMMYT, El Batan, Mexico, pp 7–1

    Google Scholar 

  • Ortigosa A, Gimenez Ibanez S, Leonhardt N, Solano R (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of Sl JAZ 2. Plant Biotech J 17(3):665–673

    Article  CAS  Google Scholar 

  • Paliwal RL, Granados G, Lafitte HR, Violic AD, Marathée J P (2000) In: Paliwal RL, Granados G, Lafitte HR, Violic AD, Marathée JP (eds) Tropical maize: improvement and production. FAO, Raom Italy, pp 363–374

    Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124(2):147–156

    Google Scholar 

  • Pásztor K, Borsos O (1990) Inheritance and chemical composition in inbred maize (Zea mays L.) × teosinte (Zea mays subsp. mexicana Schräder/Iltis) hybrids (Preliminary communication). Növénytermelés 39(3):193–213

    Google Scholar 

  • Plank JE (1963) Plant diseases-epidemics and control. Academic Press, 111 Fifth Avenue New York, p 10003

    Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Nat Acad Sci 108(17):6893–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope DD, McCarter SM (1992) Evaluation of inoculation methods for inducing common smut on corn ears. Phytopathology 82(9):950–955

    Article  Google Scholar 

  • Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper LC et al (2019) MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res 47(D1):D1146–D1154

    Article  PubMed  Google Scholar 

  • Prasanna BM, Sharma L (2005) The landraces of maize (Zea mays L.): diversity and utility. Indian J Plant Genet Resour 18(2):155–168

    Google Scholar 

  • Prasanna BM, Pixley K, Warburton ML, Xie CX (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed 26(2):339–356

    Article  CAS  Google Scholar 

  • Prischmann DA, Dashiell KE, Schneider DJ, Eubanks MW (2009) Evaluating Tripsacum-introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae). J Appl Entomol 133(1):10–20

    Article  Google Scholar 

  • Rajasekaran K, Sayler RJ, Sickler CM, Majumdar R, Jaynes JM et al (2018) Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Sci 270:150–156

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran K, Sayler RJ, Majumdar R, Sickler CM, Cary JW (2019) Inhibition of Aspergillus flavus growth and aflatoxin production in transgenic maize expressing the α-amylase Inhibitor from Lablab purpureus L. J Visual Exper 15(144):

    Google Scholar 

  • Ramakrishna W, Emberton J, Ogden M, SanMiguel P, Bennetzen JL (2002) Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14(12):3213–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez DA (1997) Gene introgression in maize (Zea mays ssp mays L.). Philippine J Crop Sci 22(2):51–63

    Google Scholar 

  • Raruang Y, Omolehin O, Hu D, Wei Q, Han ZQ et al (2020) Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions. Front Microbio 11:754

    Article  Google Scholar 

  • Razzaq T, Khan MF, Awan SI (2019) Study of northern corn leaf blight (NCLB) on maize (Zea mays L.) genotypes and its effect on yield. Sarhad J Agric 35(4):1166–1174

    Google Scholar 

  • Robinson RW, Provvidenti R, Schroeder WT (1970) A marker gene for tobacco mosaic resistance. Rep Tomato Genet Coop 20:55–56

    Google Scholar 

  • Roca De Doyle MM, Autrey LJC (1992) Assessment of yield losses as a result of co-infection by maize streak virus and maize stripe virus in Mauritius. Annals Appl Bio 120(3):443–450

    Article  Google Scholar 

  • Rojanaridpiched C, Gracen VE, Everett HL, Coors JF, Pugh BF et al (1984) Multiple factor resistance in maize to European corn borer. Maydica (Italy) 29(3):305–315

    Google Scholar 

  • Ryland AK, Storey HH (1955) Physiological races of Puccinia polysora Underw. Nature 176(4483):655–656

    Article  Google Scholar 

  • Sagar GC, Bhusal K (2019) Banded leaf and sheath bight (BLSB) of maize, its introduction, losses and management. Plant Physiol 1(2):106

    Google Scholar 

  • Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butrón A (2015) Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC Plant Bio 15(1):35

    Google Scholar 

  • Saravanakumar K, Li Y, Yu C, Wang QQ, Wang M et al (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  • Saxena G, Verma PC, Rahman LU, Banerjee S, Shukla RS et al (2008) Selection of leaf blight-resistant Pelargonium graveolens plants regenerated from callus resistant to a culture filtrate of Alternaria alternata. Crop Protect 27(3–5):558–565

    Article  CAS  Google Scholar 

  • Schenke D, Cai D (2020) Applications of CRISPR/Cas to improve crop disease resistance–beyond inactivation of susceptibility factors. Iscience 23:1–10

    Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Scott GE, Davis FM (1981) Registration of Mp496 Inbred of Maize1 (Reg. No. PL 56). Crop Sci 21(2):353

    Google Scholar 

  • Scott GE, Davis FM, Williams WP (1982) Registration of Mp701 and Mp702 germplasm lines of maize. Crop Sci 22:1270

    Article  Google Scholar 

  • Semagn K, Magorokosho C, Vivek BS, Makumbi D, Beyene Y et al (2012) Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genom 13(1):1–11

    Article  CAS  Google Scholar 

  • Sharma PN, Gautam P (2010) Assessment of yield loss in maize due to attack by the maize borer, Chilo partellus (Swinhoe). Nepal J Sci Tech 11:25–30

    Article  Google Scholar 

  • Sharma RC, Hembram D (1990) Leaf stripping: a new method to control banded leaf and sheath blight of maize. Curr Sci 59(15):745–746

    Google Scholar 

  • Sharma RC, De Leon C, Payak MM (1993a) Diseases of maize in South and South-East Asia: problems and progress. Crop Protect 12(6):414–422

    Google Scholar 

  • Sharma RC, Payak MM, Mukherjee BK (1993b) Durable resistance in maize—a case study from India. In: Durability of disease resistance. Springer, Berlin, Heidelberg, pp 227–229

    Google Scholar 

  • Sharma S, Duveiller E, Basnet R, Karki CB, Sharma RC (2005) Effect of potash fertilization on Helminthosporium leaf blight severity in wheat, and associated increases in grain yield and kernel weight. Field Crops Res 93(2–3):142–150

    Article  Google Scholar 

  • Shekhar M, Kumar S (2010) Potential biocontrol agents for the management of Macrophomina phaseolina, incitant of charcoal rot in maize. Arch Phytopathol Plant Protect 43(4):379–383

    Article  Google Scholar 

  • Shepherd DN, Mangwende T, Martin DP, Bezuidenhout M, Thomson JA et al (2007) Inhibition of maize streak virus (MSV) replication by transient and transgenic expression of MSV replication-associated protein mutants. J Gen Virol 88(1):325–336

    Article  CAS  PubMed  Google Scholar 

  • Shikov AE, Malovichko YV, Skitchenko RK, Nizhnikov AA, Antonets KS (2020) No more tears: mining sequencing data for novel bt cry toxins with cryprocessor. Toxins 12(3):204

    Article  CAS  PubMed Central  Google Scholar 

  • Simmons CR, Grant S, Altier DJ, Dowd PF, Crasta O et al (2001) Maize rhm1 resistance to Bipolaris maydis is associated with few differences in pathogenesis-related proteins and global mRNA profiles. Mol Plant-Microbe Interact 14(8):947–954

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Kaur N (2018) Biochemical and molecular characterization of a new pullulan producer Rhodosporidium paludigenum PUPY-06. J Appl Biol Biotech 6(1):28–37

    CAS  Google Scholar 

  • Singh A, Shahi JP (2012) Banded leaf and sheath blight: an emerging disease of maize (Zea mays L). Maydica 57(3):215–219

    Google Scholar 

  • Sivakumar G, Sharma RC, Rai SN (2000) Biocontrol of banded leaf and sheath blight of maize by peat based Pseudomonas fluorescens formulation. Indian Phytopathol 53(2):190–192

    Google Scholar 

  • Smith DR (1975) Expression of monogenic chlorotic-lesion resistance to Helminthosporium maydis in corn

    Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh CT et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F et al (2018) The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat Genet 50(9):1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Sprink T, Wilhelm RA, Spök A, Robienski J, Schleissing S et al (2020) Plant genome editing-policies and governance. Front Media SA 11:284

    Google Scholar 

  • Stagnati L, Lanubile A, Samayoa LF, Bragalanti M, Giorni P et al (2019) A genome wide association study reveals markers and genes associated with resistance to Fusarium verticillioides infection of seedlings in a maize diversity panel. Genes Genomes Genet 9(2):571–579

    CAS  Google Scholar 

  • Subedi S, Subedi H, Neupane S (2016) Status of maize stalk rot complex in western belts of Nepal and its integrated management. J Maize Res Dev 2(1):30–42

    Article  Google Scholar 

  • Sun S, Zhou Y, Chen J, Shi J, Zhao H et al (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50(9):1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Tang JD, Perkins A, Williams WP, Warburton ML (2015) Using genome-wide associations to identify metabolic pathways involved in maize aflatoxin accumulation resistance. BMC Genom 16(1):673

    Article  CAS  Google Scholar 

  • Tefera T, Mugo S, Beyene Y (2016) Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa. Food Security 8(1):211–220

    Article  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE et al (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6(9):2519–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Bio 4(1):12

    Article  CAS  Google Scholar 

  • Tinsley NA, Estes RE, Gray ME (2013) Validation of a nested error component model to estimate damage caused by corn rootworm larvae. J Appl Entomol 137(3):161–169

    Article  Google Scholar 

  • Tyagi S, Kesiraju K, Saakre M, Rathinam M, Raman V et al (2020) Genome editing for resistance to insect pests: an emerging tool for crop improvement. ACS Omega 5(33):20674–20683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970–1971. Ann Rev Phytopathol 10(1):37–50

    Article  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Martinant JP, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Bio 12(1):56

    Article  CAS  Google Scholar 

  • Viana PA, Guimarães PEO (1997) Maize resistance to the lesser cornstalk borer and fall armyworm in Brazil. In Embrapa Milho e Sorgo-Artigo em anais de congresso (ALICE). In: International symposium on insect resistant in maize: recent advances and utilization, 1994, Mexico, Proceedings. CIMMYT, Mexico, pp 112–116

    Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S et al (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169(3):1617–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikal Y, Kaur A, Jindal J, Kaur K, Pathak D et al (2020) Identification of genomic regions associated with shoot fly resistance in maize and their syntenic relationships in the sorghum genome. PLoS ONE 15(6):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Yu J, Zhu D, Chang Y, Zhao Q (2014a) Maize ZmRACK1 is involved in the plant response to fungal phytopathogens. Int J Mol Sci 15(6):9343–9359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J et al (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech 32(9):947–951

    Article  CAS  Google Scholar 

  • Warburton ML, Tang JD, Windham GL, Hawkins LK, Murray SC et al (2015) Genome-wide association mapping of Aspergillus flavus and aflatoxin accumulation resistance in maize. Crop Sci 55(5):1857–1867

    Article  CAS  Google Scholar 

  • Ward JM, Stromberg EL, Nowell DC, Nutter FW Jr (1999) Gray leaf spot: a disease of global importance in maize production. Plant Dis 83(10):884–895

    Article  PubMed  Google Scholar 

  • Wasala SK, Guleria SK, Sekhar JC, Mahajan V, Kalyani Srinivasan et al (2013) Analysis of yield performance and genotype × environment effects on selected maize (Zea mays) landrace accessions of India. Indian J Agril Sci 83(3):287–293

    Google Scholar 

  • Wei JK, Liu KM, Chen JP, Luo PC, Stadelmann OYL (1988) Pathological and physiological identification of race C of Bipolaris maydis in China. Phytopathology 78(5):550–554

    Article  Google Scholar 

  • Wei WH, Zhao WP, Song YC, Liu LH, Guo LQ et al (2003) Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas 138(1):21–26

    Article  PubMed  Google Scholar 

  • Welz HG, Geiger HH (2000) Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breed 119(1):1–14

    Article  CAS  Google Scholar 

  • Widstrom NW, McMillian WW, Wiseman BR (1979) Ovipositional preference of the corn earworm and the development of trichomes on two exotic corn selections. Env Entomol 8(5):833–839

    Article  Google Scholar 

  • Williams WP, Davis FM (1980) Registration of Mp703 germplasm line of maize. Crop Sci 20:418

    Article  Google Scholar 

  • Williams WP, Davis FM (1982) Registration of Mp704 germplasm line of maize. Crop Sci 22:1269

    Article  Google Scholar 

  • Williams WP, Davis FM (1984) Registration of Mp705, Mp706, and Mp707 germplasm lines of maize. Crop Sci 24(6):1217

    Article  Google Scholar 

  • Williams WP, Davis FM (2000) Registration of maize germplasms Mp713 and Mp714. Crop Sci 40(2):584

    Article  Google Scholar 

  • Williams WP, Davis FM (2002) Registration of maize germplasm line Mp716. Crop Sci 42(2):671–672

    Article  Google Scholar 

  • Williams WP, Davis FM, Windham GL (1990) Registration of maize germplasm line Mp708. Crop Sci 30:757

    Article  Google Scholar 

  • Wiseman BR, Davis FM (1990) Plant resistance to insects attacking corn and grain sorghum. Florida Entomol 73(3):446–458

    Article  Google Scholar 

  • Wiseman BR, Widstrom NW, McMillian WW (1977) Ear characteristics and mechanisms of resistance among selected corns to corn earworm. Florida Entomol:97–103

    Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169(4):2277–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisser RJ, Balint Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96(2):120–129

    Article  CAS  PubMed  Google Scholar 

  • Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J et al (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Nat Acad Sci 108(18):7339–7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10(3):359–374

    Article  CAS  PubMed  Google Scholar 

  • Yadav OP, Hossain F, Karjagi CG, Kumar B, Zaidi PH et al (2015) Genetic improvement of maize in India: retrospect and prospects. Agril Res 4(4):325–338

    CAS  Google Scholar 

  • Yang G, Li C (2012) General description of Rhizoctonia species complex. In: Plant pathology. Intech Open, p 362

    Google Scholar 

  • Yang G, Wiseman BR, Isenhour DJ, Espelie KE (1993) Chemical and ultrastructural analysis of corn cuticular lipids and their effect on feeding by fall armyworm larvae. J Chem Ecol 19(9):2055–2074

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Stoopen G, Yalpani N, Vervoort J, de Vos R et al (2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metabol Engin 13(4):414–425

    Article  CAS  Google Scholar 

  • Yang N, Xu XW, Wang RR, Peng WL, Cai L et al (2017a) Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun 8(1):1–10

    Article  CAS  Google Scholar 

  • Yang Q, Balint Kurti P, Xu M (2017b) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10(3):402–413

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Liu J, Gao Q, Gui S, Chen L et al (2019) Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 51(6):1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Yobo KS, Laing MD, Hunter CH, Morris MJ (2004) Biological control of Rhizoctonia solani by two Trichoderma species isolated from South African composted soil. South African J Plant Soil 21(3):139–144

    Article  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Ann Phytopathol 34(1):479–501

    Article  CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaitlin D, DeMars S, Ma Y (1993) Linkage of rhm, a recessive gene for resistance to southern corn leaf blight, to RFLP marker loci in maize (Zea mays) seedlings. Genome 36(3):555–564

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Fu FL, Gou L, Wang HG, Li WC (2010) RNA interference-based transgenic maize resistant to maize dwarf mosaic virus. J Plant Bio 53(4):297–305

    Article  CAS  Google Scholar 

  • Zhang J, Zhao Y, Gan D (2011) Construction of marker-free siRNA complex expression vector against MDMV and MRDV. J Anhui Agril Uni 38(2):232–237

    CAS  Google Scholar 

  • Zhang Y, Huang Q, Pennerman KK, Yu J, Liu Z et al (2016) Datasets for transcriptomic analyses of maize leaves in response to Asian corn borer feeding and/or jasmonic acid. Data Brief 7:1010–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Zhao F, Zhao D (2011) Regeneration and transformation of a maize elite inbred line via immature embryo culture and enhanced tolerance to a fungal pathogen Exserohilum turcicum with a balsam pear class I chitinase gene. African J Agril Res 6(7):1923–1930

    Google Scholar 

  • Zila CT, Samayoa LF, Santiago R, Butrón A, Holland JB (2013) A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. Genes Genomes Genet 3(11):2095–2104

    Google Scholar 

  • Zila CT, Ogut F, Romay MC, Gardner CA, Buckler ES et al (2014) Genome-wide association study of Fusarium ear rot disease in the USA maize inbred line collection. BMC Plant Bio 14(1):372

    Article  CAS  Google Scholar 

  • Zuo W, Chao Q, Zhang N, Ye J, Tan G et al (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47(2):151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati Mukri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gadag, R.N. et al. (2021). Resistance to Biotic Stress: Theory and Applications in Maize Breeding. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-75879-0_3

Download citation

Publish with us

Policies and ethics