Skip to main content
Log in

Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2 ). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2 , antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Verma S, Mishra N (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defence system. J Plant Physiol 162:669–677

    Article  CAS  PubMed  Google Scholar 

  3. Lamb C, Dixon RA (1997) The oxidative burst in double oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:27–251

    Article  Google Scholar 

  4. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  5. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  6. Kuz′niak E, Sklodowska M (2001) Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci 160:723–731

    Article  Google Scholar 

  7. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  8. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  9. Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  10. Vranova E, Inze D, Van Brensegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  CAS  PubMed  Google Scholar 

  11. Henzler T, Steudel E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    Article  CAS  PubMed  Google Scholar 

  12. Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  CAS  PubMed  Google Scholar 

  14. Dat J, Vandenabeele S, Vranova′ E, Van Montagu M, Inze′ D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  15. Kathiresan A, Lafitte HR, Chen J, Mansueto L, Bruskiewich R, Bennett J (2006) Gene expression microarrays and their application in drought stress research. Field Crops Res 97:101–110

    Article  Google Scholar 

  16. Peng Y, Huang Z, Guo BJ (2005) The scavenging effects of se enriched Spirulina platensis on oxygen free radicals. Acta Nutrimenta Sin 27:61–65

    CAS  Google Scholar 

  17. Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–664

    CAS  Google Scholar 

  18. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  19. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1242

    Article  CAS  PubMed  Google Scholar 

  20. Murphy TM, Sung WW, Lin CH (2002) H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol 29:1081–1087

    Article  Google Scholar 

  21. Neto ADA, Prisco JT, Eneas-Filho J, Medeiros J-VR, GomesFilho E (2005) Hydrogen peroxide pre-treatment induces stress acclimation in maize plants. J Plant Physiol 162:1114–1122

    Article  Google Scholar 

  22. Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    Article  CAS  PubMed  Google Scholar 

  24. Kook S, Han HK, Kim GH, Choi K (2008) The anti-hepatotoxic effect of ginseng in rats: meta-analysis. J Ginseng Res 29:161–170

    Google Scholar 

  25. Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    Article  CAS  PubMed  Google Scholar 

  26. Kirk JOT, Allen RL (1965) Dependence of chloroplast pigment on actidione. Arch Biochem Biophys Res Commun 21:523–530

    Article  CAS  Google Scholar 

  27. Gonzalez-Vilar G (2001) Determination of relative water content. In: Roger MIR (ed) Handbook of plant ecophysiology techniques. Kluwer Publishers, New York, pp 207–212

    Google Scholar 

  28. Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  29. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  30. McKersie BD, Leshem YY (1994) Stress and stress coping in cultivated plants. Kluwer Academic Publishers, Dordrecht, p 256

    Book  Google Scholar 

  31. Urbanek H, Kuzniak-Gebarowska E, Herka K (1991) Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiol Plant 13:43–50

    CAS  Google Scholar 

  32. Plewa MJ, Smith SR, Wagner ED (1991) Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Res 247:57–64

    Article  CAS  PubMed  Google Scholar 

  33. Mukherjee SP, Choudhari MA (1983) Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:116–170

    Google Scholar 

  34. Predieri S, Norman HA, Krizek DT, Pillai P, Mirecki RM, Zimmerman RH (1995) Influence of UV-B radiation on membrane lipid composition and ethylene evolution in ‘Doyene D’Hiver’ pear shoots grown in vitro under different photosynthetic photon fluxes. Environ Exp Bot 35:151–160

    Article  CAS  Google Scholar 

  35. Elstner EF, Heupel A (1976) Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 130:175–180

    Article  CAS  PubMed  Google Scholar 

  36. Sathiyaraj G, Srinivasan S, Subramanium S, Kim YJ, Kim YJ, Kwon WS, Yang DC (2009) Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol Biol Rep 37(7):3445–3454

    Article  PubMed  Google Scholar 

  37. Lee OR, Pulla RK, Kim YJ, Balusamy SR, Yang DC (2012) Expression and stress tolerance of PR10 genes from Panax ginseng C.A. Meyer. Mol Biol Rep 39(3):2365–2374

    Article  CAS  PubMed  Google Scholar 

  38. Pulla RK, Lee OR, In JG, Parvin S, Kim YJ, Shim JS, Sun H, Kim YJ, Senthil K, Yang DC (2011) Identification and characterization of class I chitinase in Panax ginseng C.A. Meyer. Mol Biol Rep 38(1):95–102

    Article  CAS  PubMed  Google Scholar 

  39. Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Devi BS, Yang DC (2012) Interrelationship between calmodulin (CaM) and H2O2 in abscisic acid-induced antioxidant defense in the seedlings of Panax ginseng. Mol Biol Rep 39(7):7327–7338

    Article  CAS  PubMed  Google Scholar 

  40. Khorolragchaa A, Parvin S, Shim JS, Kim YJ, Lee OR, In JG, Kim YJ, Kim SY, Yang DC (2010) Isolation of sesquiterpene synthase Homolog from Panax ginseng C.A. Meyer. J Ginseng Res 34:17–22

    Article  CAS  Google Scholar 

  41. Parvin S, Kim YJ, Pulla RK, Sathiyamoorthy S, Miah G, Kim YJ, Neha GW, Yang DC (2010) Identification and characterization of spermidine synthase gene from Panax ginseng. Mol Biol Rep 37:923–932

    Article  CAS  PubMed  Google Scholar 

  42. Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Fedina IS, Nedeva D, Cicek N (2009) Pre-treatment with H2O2 induces salt tolerance in barley seedlings. Biol Plant 53:321–324

    Article  CAS  Google Scholar 

  44. He L, Gao Z, Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr Biotechnol 08(22):6151–6157

    CAS  Google Scholar 

  45. Liu Y, Huang W, Zhan J, Pan Q (2005) Systemic induction of H2O2 in pea seedlings pretreated by wounding and exogenous jasmonic acid. Sci China C 48(3):202–212

    Article  CAS  Google Scholar 

  46. Anonymous (2002) Report by the Mass Governor’s Advisory Council on radiation protection, 3rd edn. Center for Nuclear Technology and Society, Worcester Polytechnic Institute, Worcester. http://cnts.wpi.edu:9000/rsh/dd3/_database.jsp

  47. Frederickson CJ, Cuajungco MP, LaBuda CJ, Suh SW (2002) Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience 115:471–474

    Article  CAS  PubMed  Google Scholar 

  48. Narimanov AA, Korystov YN (1997) Low doses of ionizing radiation and hydrogen peroxide stimulate plant growth. Biologia (Bratislava) 52:121–124

    Google Scholar 

  49. Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    CAS  PubMed  Google Scholar 

  50. Tourneux C, Peltier G (1995) Effects of water deficit on photosynthetic oxygen exchange measured using 18O2 and mass spectrometry in Solanum tuberosum L. leaf discs. Planta 195:570–577

    Article  CAS  Google Scholar 

  51. Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Hand book photosynthesis, 2nd edn. CRC Press, New York, pp 717–718

    Google Scholar 

  52. Shin D, Sheng Y (2005) Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot 54:8–21

    Article  Google Scholar 

  53. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  54. Mansour MMF, Salama KHA, Ali FZM, Hadid AFA (2005) Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen Appl Plant Physiol 31:29–41

    CAS  Google Scholar 

  55. Khan MH, Singha LB, Panda SK (2002) Changes in antioxidant levels in Oriza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant 24:145–148

    Article  CAS  Google Scholar 

  56. Durgaprasad KMR, Muthukumarswamy M, Panneerselvum R (1996) Changes in protein metabolism induced by NaCl salinity in soybean seedlings. Indian J Plant Physiol 1:98–101

    CAS  Google Scholar 

  57. Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  58. Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862

    Article  CAS  Google Scholar 

  59. Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:89–91

    Google Scholar 

  60. Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  CAS  PubMed  Google Scholar 

  61. Li F, Liu P, Wang T, Bian P, Wu Y, Wu L, Yu Z (2010) The induction of bystander mutagenic effects in vivo by alpha-particle irradiation in whole Arabidopsis thaliana plants. Radiat Res 174(2):228–237

    Article  CAS  PubMed  Google Scholar 

  62. Lee OR, Sathiyaraj G, Kim YJ, In JG, Kwon WS, Kim JH, Yang DC (2011) Defense genes induced by pathogens and abiotic stresses in Panax ginseng C.A. Meyer. J Ginseng Res 35:1–11

    Article  CAS  Google Scholar 

  63. Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Sci China C 49:1–11

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by iPET (112142-05-1-CG000), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok Chun Yang.

Additional information

Gayathri Sathiyaraj and Sathiyaraj Srinivasan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathiyaraj, G., Srinivasan, S., Kim, YJ. et al. Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer. Mol Biol Rep 41, 3761–3771 (2014). https://doi.org/10.1007/s11033-014-3241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3241-3

Keywords

Navigation