Skip to main content

Advertisement

Log in

Association between the TP53 polymorphisms and lung cancer risk: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The previous published data on the association between TP53 codon 72, intron 6, and intron 3 16 bp polymorphisms and lung cancer risk remained controversial. This meta-analysis of literatures was performed to derive a more precise estimation of the relationship. 38 publications with 51 studies were selected for this meta-analysis, including 17,337 cases and 16,127 controls for TP53 codon 72 (from 43 studies), 2,201 cases and 2,399 controls for TP53 intron 6 (from four studies), and 4,322 cases and 4,558 controls for TP53 intron 3 16 bp (from four studies). When all the eligible studies were pooled into the meta-analysis of codon 72 polymorphism, there was significant association between lung cancer risk and codon 72 polymorphism in any genetic model (dominant model: OR = 1.13, 95 % CI 1.05–1.21; recessive model: OR = 1.14, 95 % CI 1.02–1.27; additive model: OR = 1.19, 95 % CI 1.05–1.33). In the subgroup analysis by ethnicity, histological type, source of control, and smoking status, significantly increased risks were observed in subgroups such as Asians, Caucasians, lung squamous cell carcinoma patients for Asians, population-based study, hospital-based study, non-smokers, and smokers. When all the eligible studies were pooled into the meta-analysis of intron 6 polymorphism, there was significant association between lung cancer risk and intron 6 polymorphism in dominant model (OR = 1.27, 95 % CI 1.11–1.44). When all the eligible studies were pooled into the meta-analysis of intron 3 16 bp polymorphism, there was significant association between lung cancer risk and intron 3 16 bp polymorphism in dominant model (OR = 1.12, 95 % CI 1.02–1.23) and additive model (OR = 1.41, 95 % CI 1.04–1.90). Additionally, when one study was deleted in the sensitive analysis, the results of TP53 intron 3 16 bp duplication polymorphism were changed in the dominant model (OR = 1.11, 95 % CI 0.87–1.42) and additive model (OR = 1.01, 95 % CI 0.65–1.56). In summary, this meta-analysis indicates that codon 72 and intron 6 polymorphisms show an increased lung cancer risk. A study with the larger sample size is needed to further evaluated gene-environment interaction on TP53 codon 72, intron 6, and intron 3 16 bp polymorphisms and lung cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Alberg AJ, Brock MV, Samet JM (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23:3175–3185

    Article  PubMed  Google Scholar 

  3. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  4. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    Article  CAS  PubMed  Google Scholar 

  5. Denehower LA (2005) p53 guardian and suppressor of longevity? Exp Gerontol 40:7–9

    Article  Google Scholar 

  6. Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365

    Article  CAS  PubMed  Google Scholar 

  7. Runnebaum IB, Tong XW, Moebus V, Heilmann V, Kieback DG, Kreienberg R (1994) Multiplex PCR screening detects small p53 deletions and insertions in human ovarian cancer cell lines. Hum Genet 93:620–624

    Article  CAS  PubMed  Google Scholar 

  8. Lazar V, Hazard F, Bertin F, Janin N, Bellet D, Bressac B (1993) Simple sequence repeat polymorphism within the p53 gene. Oncogene 8:1703–1705

    CAS  PubMed  Google Scholar 

  9. Chumakov PM, Jenkins JR (1991) BstNI/NciI polymorphism of the human p53 gene (TP53). Nucleic Acids Res 19:6969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    Article  CAS  PubMed  Google Scholar 

  11. Weston A, Perrin LS, Forrester K, Hoover RN, Trump BF, Harris CC (1992) Allelic frequency of a p53 polymorphism in human lung cancer. Cancer Epidemiol Biomarkers Prev 1:481–483

    CAS  PubMed  Google Scholar 

  12. Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S (1993) Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis 14:1085–1089

    Article  CAS  PubMed  Google Scholar 

  13. Weston A, Ling-Cawley HM, Caporaso NE, Bowman ED, Hoover RN, Trump BF, Harris CC (1994) Determination of the allelic frequencies of an L-myc and a p53 polymorphism in human lung cancer. Carcinogenesis 15:583–587

    Article  CAS  PubMed  Google Scholar 

  14. Jin X, Wu X, Roth JA, Amos CI, King TM, Branch C, Honn SE, Spitz MR (1995) Higher lung cancer risk for younger African–Americans with the Pro/Pro p53 genotype. Carcinogenesis 16:2205–2208

    Article  CAS  PubMed  Google Scholar 

  15. Birgander R, Sjalander A, Rannug A, Alexandrie AK, Sundberg MI, Seidegard J, Tornling G, Beckman G, Beckman L (1995) P53 polymorphisms and haplotypes in lung cancer. Carcinogenesis 16:2233–2236

    Article  CAS  PubMed  Google Scholar 

  16. To-Figueras J, Gene M, Gomez-Catalan J, Galan C, Firvida J, Fuentes M, Rodamilans M, Huguet E, Estape J, Corbella J (1996) Glutathione-S-Transferase M1 and codon 72 p53 polymorphisms in a northwestern Mediterranean population and their relation to lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 5:337–342

    CAS  PubMed  Google Scholar 

  17. Murata M, Tagawa M, Kimura M, Kimura H, Watanabe S, Saisho H (1996) Analysis of a germ line polymorphism of the p53 gene in lung cancer patients discrete results with smoking history. Carcinogenesis 17:261–264

    Article  CAS  PubMed  Google Scholar 

  18. Murata M, Tagawa M, Kimura H, Kakisawa K, Shirasawa H, Fujisawa T (1998) Correlation of the mutation of p53 gene and the polymorphism at codon 72 in smoking-related non-small lung cancer patients. Int J Oncol 12:577–581

    CAS  PubMed  Google Scholar 

  19. Wang YC, Chen CY, Chen SK, Chang YY, Lin P (1999) P53 codon 72 polymorphism in Taiwanese lung cancer patients: association with lung cancer susceptibility and prognosis. Clin Cancer Res 5:129–134

    CAS  PubMed  Google Scholar 

  20. Fan R, Wu MT, Miller D, Wain JC, Kelsey KT, Wiencke JK (2000) The p53 codon 72 polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev 9:1037–1042

    CAS  PubMed  Google Scholar 

  21. Pierce LM, Sivaraman L, Chang W, Lum A, Donlon T, Seifried A (2000) Relationships of TP53 codon 72 and HRAS1 polymorphisms with lung cancer risk in an ethnically diverse population. Cancer Epidemiol Biomarkers Prev 9:1199–1204

    CAS  PubMed  Google Scholar 

  22. Biros E, Kalina I, Biros I, Kohut A, Bogyiova E, Salagovic J (2001) Polymorphism of the p53 gene within the codon 72 in lung cancer patients. Neoplasma 48:407–411

    CAS  PubMed  Google Scholar 

  23. Liu G, Miller DP, Zhou W, Thurston SW, Fan R, Xu LL (2001) Differential association of the codon 72 p53 and GSTM1 polymorphisms on the histological subtype of non-small cell lung carcinoma. Cancer Res 61:8718–8722

    CAS  PubMed  Google Scholar 

  24. Wu X, Zhao H, Amos CI, Shete S, Makan N, Hong WK (2002) P53 genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J Natl Cancer Inst 94:681–690

    Article  CAS  PubMed  Google Scholar 

  25. Miller DP, Liu G, De L, Lynch TJ, Wain JC, Su L (2002) Combinations of the variant genotypes of GSTP1, GSTM1 and p53 are associated with an increased lung cancer risk. Cancer Res 62:2819–2823

    CAS  PubMed  Google Scholar 

  26. Papadakis ED, Soulitzis N, Spandidos DA (2002) Association of p53 codon 72 polymorphism with advanced lung cancer: the Arg allele is preferentially retained in tumours arising in Arg/Pro germline heterozygotes. Br J Cancer 87:1013–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Irarrazabal CE, Rojas C, Aracena R, Marquez C, Gil L (2003) Chilean pilot study on the risk of lung cancer associated with codon 72 polymorphism in the gene of protein p53. Toxicol Lett 144:69–76

    Article  CAS  PubMed  Google Scholar 

  28. Hiraki A, Matsuo K, Hamajima N, Ito H, Hatooka S, Suyama M (2003) Different risk relations with smoking for non-small-cell lung cancer: comparison of P53 and TP73 genotypes. Asian Pac J Cancer Prev 4:107–112

    PubMed  Google Scholar 

  29. Zhang JH, Li Y, Wang R, Wen DG, Wu ML, He M (2003) P53 gene polymorphism with susceptibility to esophageal cancer and lung cancer in Chinese population. Zhonghua zhong liu za zhi 25:365–367

    CAS  PubMed  Google Scholar 

  30. Su L, Sai Y, Fan R, Thurston SW, Miller DP, Zhou W, Wain JC, Lynch TJ, Liu G, Christiani DC (2003) P53 (codon 72) and P21 (codon 31) polymorphisms alter in vivo mRNA expression of p21. Lung Cancer 40:259–266

    Article  PubMed  Google Scholar 

  31. Jain N, Singh V, Hedau S, Kumar S, Daga MK, Dewan R (2005) Infection of human papillomavirus type 18 and p53 codon 72 polymorphism in lung cancer patients from India. Chest 128:3999–4007

    Article  CAS  PubMed  Google Scholar 

  32. Sakiyama T, Kohno T, Mimaki S, Ohta T, Yanagitani N, Sobue T, Kunitoh H (2005) Association of amino acid substitution polymorphisms in DNA repair genes TP53, POLI, REV1 and LIG4 with lung cancer risk. Int J Cancer 114:730–737

    Article  CAS  PubMed  Google Scholar 

  33. Zhang XM, Miao X, Guo Y, Tan W, Zhou Y, Sun T (2006) Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum Mutat 27:110–117

    Article  PubMed  Google Scholar 

  34. Hung RJ, Boffetta P, Canzian F, Moullan N, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V (2006) Sequence variants in cell cycle control pathway X-ray exposure, and lung cancer risk: a multicenter case-control study in Central Europe. Cancer Res 66:8280–8286

    Article  CAS  PubMed  Google Scholar 

  35. Szymanowska A, Jassem E, Dziadziuszko R, Borg A, Limon J, Kobierska-Gulida G (2006) Increased risk of non-small cell lung cancer and frequency of somatic TP53 gene mutations in Pro72 carriers of TP53 Arg72Pro polymorphism. Lung Cancer 52:9–14

    Article  PubMed  Google Scholar 

  36. Popanda O, Edler L, Waas P, Schattenberg T, Butkiewicz D, Muley T (2007) Elevated risk of squamous-cell carcinoma of the lung in heavy smokers carrying the variant alleles of the TP53 Arg72Pro and p21 Ser31Arg polymorphisms. Lung Cancer 55:25–34

    Article  PubMed  Google Scholar 

  37. Giuliani L, Jaxmar T, Casadio C, Gariglio M, Manna A, Dantonio D (2007) Detection of oncogenic viruses SV40, BKV, JCV, HCMV, HPV and p53 codon 72 polymorphism in lung carcinoma. Lung Cancer 57:273–281

    Article  PubMed  Google Scholar 

  38. Mechanic LE, Bowman ED, Welsh JA, Khan MA, Hagiwara N, Enewold L (2007) Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. Cancer Epidemiol Biomarkers Prev 16:214–222

    Article  CAS  PubMed  Google Scholar 

  39. Nadji SA, Mahmoodi M, Ziaee AA, Naghshvar F, Torabizadeh J, Yahyapour Y (2007) An increased lung cancer risk associated with codon 72 polymorphism in the TP53 gene and human papillomavirus infection in Mazandaran province, Iran. Lung Cancer 56:145–151

    Article  PubMed  Google Scholar 

  40. Wang W, Spitz MR, Yang H, Lu C, Stewart DJ, Wu X (2007) Genetic variants in cell cycle control pathway confer susceptibility to lung cancer. Clin Cancer Res 13:5974–5981

    Article  CAS  PubMed  Google Scholar 

  41. Sreeja L, Syamala V, Raveendran PB, Santhi S, Madhavan J, Ankathil R (2008) p53 Arg72Pro polymorphism predicts survival outcome in lung cancer patients in Indian population. Cancer Invest 26:41–46

    Article  CAS  PubMed  Google Scholar 

  42. Fernández-Rubio A, López-Cima MF, González-Arriaga P, García-Castro L, Pascual T, Marrón MG, Tardón A (2008) The TP53 Arg72Pro polymorphism and lung cancer risk in a population of Northern Spain. Lung Cancer 61:309–316

    Article  PubMed  Google Scholar 

  43. Honma HN, De Capitani EM, Perroud MW, Barbeiroa AS, Toro IF, Costa DB (2008) Influence of p53 codon 72 exon 4, GSTM1, GSTT1 and GSTP1*B polymorphisms in lung cancer risk in a Brazilian population. Lung Cancer 62:152–162

    Article  Google Scholar 

  44. Jung HY, Whang YM, Sung JS, Shin HD, Park BL, Kim JS (2008) Association study of TP53 polymorphisms with lung cancer in a Korean population. J Hum Genet 53:508–514

    Article  CAS  PubMed  Google Scholar 

  45. Sobti RC, Kaur P, Kaur S, Janmeja AK, Jindal SK, Kishan J, Raimondi S (2009) Impact of interaction of polymorphic forms of p53 codon 72 and N-acetylation gene (NAT2) on the risk of lung cancer in the North Indian population. DNA Cell Biol 28(9):443–449

    Article  CAS  PubMed  Google Scholar 

  46. Klinchid J, Chewaskulyoung B, Saeteng S, Lertprasertsuke N, Kasinrerk W, Cressey R (2009) Effect of combined genetic polymorphisms on lung cancer risk in northern Thai women. Cancer Genet Cytogenet 195:143–149

    Article  CAS  PubMed  Google Scholar 

  47. Cáceres DD, Quiñones LA, Schroeder JC, Gil LD, Irarrázabal CE (2009) Association between p53 codon 72 genetic polymorphism and tobacco use and lung cancer risk. Lung 187(2):110–115

    Article  PubMed  Google Scholar 

  48. Kiyohara C, Horiuchi T, Miyake Y, Takayama K, Nakanishi Y (2010) Cigarette smoking, TP53 Arg72Pro, TP53BP1 Asp353Glu and the risk of lung cancer in a Japanese population. Oncol Rep 23(5):1361–1368

    Article  CAS  PubMed  Google Scholar 

  49. Pandima Devi K, Sivamaruthi B, Kiruthiga PV, Karutha Pandian S (2010) Study of p53 codon 72 polymorphism and codon 249 mutations in Southern India in relation to age, alcohol drinking and smoking habits. Hum Exp Toxicol 29:451–458

    Article  CAS  PubMed  Google Scholar 

  50. Chua HW, Ng D, Choo S, Lum SS, Li H, Soh LY, Sabapathy K, Seow A (2010) Effect of MDM2 SNP309 and p53 codon 72 polymorphisms on lung cancer risk and survival among non-smoking Chinese women in Singapore. BMC Cancer 10:88

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ihsan R, Devi TR, Yadav DS, Mishra AK, Sharma J, Zomawia E, Verma Y, Phukan R, Mahanta J, Kataki AC, Kapur S, Saxena S (2011) Investigation on the role of p53 codon 72 polymorphism and interactions with tobacco, betel quid, and alcohol in susceptibility to cancers in a high-risk population from North East India. DNA Cell Biol 30:163–171

    Article  CAS  PubMed  Google Scholar 

  52. Biros E, Kalina I, Kohut A, Stubna J, Salagovic J (2001) Germ line polymorphisms of the tumor suppressor gene p53 and lung cancer. Lung Cancer 31:157–162

    Article  CAS  PubMed  Google Scholar 

  53. Schabath MB, Wu X, Wei Q, Li G, Gu J, Spitz MR (2006) Combined effects of the p53 and p73 polymorphisms on lung cancer risk. Cancer Epidemiol Biomarkers Prev 15(1):158–161

    Article  CAS  PubMed  Google Scholar 

  54. Kohno T, Kunitoh H, Mimaki S, Shiraishi K, Kuchiba A, Yamamoto S, Yokota J (2011) Contribution of the TP53, OGG1, CHRNA3, and HLA-DQA1 genes to the risk for lung squamous cell carcinoma. J Thorac Oncol 6:813–817

    Article  PubMed  Google Scholar 

  55. Piao JM, Kim HN, Song HR, Kweon SS, Choi JS, Yun WJ, Kim YC, Oh IJ, Kim KS, Shin MH (2011) p53 codon 72 polymorphism and the risk of lung cancer in a Korean population. Lung Cancer 73:264–267

    Article  PubMed  Google Scholar 

  56. Liu D, Wang F, Guo X, Wang Q, Wang W, Xu H, Xu G (2012) Association between p53 codon 72 genetic polymorphisms and tobacco use and lung cancer risk in a Chinese population. Mol Biol Rep 40(1):645–649

    Article  PubMed  Google Scholar 

  57. Davey SG, Egger M (1997) Meta-analyses of randomized controlled trials. Lancet 350:1182

    Google Scholar 

  58. Ioannidis JP, Boffetta P, Little J, O’Brien TR, Uitterlinden AG, Vineis P, Balding DJ, Chokkalingam A, Dolan SM, Flanders WD, Higgins JP, McCarthy MI, McDermott DH, Page GP, Rebbeck TR, Seminara D, Khoury MJ (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 37:120–132

    Article  PubMed  Google Scholar 

  59. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    CAS  PubMed  Google Scholar 

  60. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  61. Harbord RM, Egger M, Sterne JA (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25:3443–3457

    Article  PubMed  Google Scholar 

  62. Robles AI, Linke SP, Harris CC (2002) The p53 network in lung carcinogenesis. Oncogene 21:6898–6907

    Article  CAS  PubMed  Google Scholar 

  63. Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19:1092–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    Article  CAS  PubMed  Google Scholar 

  65. Pietsch EC, Humbey O, Murphy ME (2006) Polymorphisms in the p53 pathway. Oncogene 25:1602–1611

    Article  CAS  PubMed  Google Scholar 

  66. Hrstka R, Coates PJ, Vojtesek B (2009) Polymorphisms in p53 and the p53 pathway: roles in cancer susceptibility and response to treatment. J Cell Mol Med 13:440–453

    Article  CAS  PubMed  Google Scholar 

  67. Sato S, Nakamura Y, Tsuchiya E (1994) Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res 54:5652–5655

    CAS  PubMed  Google Scholar 

  68. Matakidou A, Eisen T, Houlston RS (2003) TP53 polymorphisms and lung cancer risk: a systematic review and meta-analysis. Mutagenesis 18:377–385

    Article  CAS  PubMed  Google Scholar 

  69. Li Y, Qiu LX, Shen XK, Lv XJ, Qian XP, Song Y (2009) A meta-analysis of TP53 codon 72 polymorphism and lung cancer risk: evidence from 15,857 subjects. Lung Cancer 66:15–21

    Article  PubMed  Google Scholar 

  70. Dai S, Mao C, Jiang L, Wang G, Cheng H (2009) P53 polymorphism and lung cancer susceptibility: a pooled analysis of 32 case–control studies. Hum Genet 125:633–638

    Article  CAS  PubMed  Google Scholar 

  71. Yan L, Zhang D, Chen C, Mao Y, Xie Y, Li Y, Huang Y, Han B (2009) TP53 Arg72Pro polymorphism and lung cancer risk: a meta-analysis. Int J Cancer 125:2903–2911

    Article  CAS  PubMed  Google Scholar 

  72. Sunaga N, Kohno T, Yanagitani N, Sugimura H, Kunitoh H, Tamura T, Takei Y, Tsuchiya S, Saito R, Yokota J (2002) Contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility. Cancer Epidemiol Biomarkers Prev 11:730–738

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-Xiang Yan.

Additional information

Xiang-Hua Ye, Zhi-Bin Bu, and Jie Feng contributed equally to this study and should be condidered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, XH., Bu, ZB., Feng, J. et al. Association between the TP53 polymorphisms and lung cancer risk: a meta-analysis. Mol Biol Rep 41, 373–385 (2014). https://doi.org/10.1007/s11033-013-2871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2871-1

Keywords

Navigation