Skip to main content

Advertisement

Log in

Association of p73 G4C14-to-A4T14 polymorphism with lung cancer risk

  • Research Article
  • Published:
Tumor Biology

Abstract

Conflicting results were implicated in both single case-control studies and meta-analyses of the correlation between p73 G4C14-to-A4T14 polymorphism and lung cancer risk. We designed this study to further assess the association by meta-analysis. A meta-analysis was performed based on five case-control studies (5,467 subjects) retrieved from PubMed and Embase. Odds ratios (ORs) with 95 % confidence intervals (CIs) were measured for the association using the models of random effects and fixed effects. The results showed no evidence between p73 G4C14-to-A4T14 polymorphism and lung cancer risk in any genetic model (allele model: OR, 1.06, 95 % CI, 0.89–1.26; homozygote genotypes: OR, 1.18, 95 % CI, 0.80–1.73; heterozygote genotypes: OR, 1.04, 95 % CI, 0.89–1.23; dominant model: OR, 1.05, 95 % CI, 0.89–1.24; recessive model: OR, 1.17, 95 % CI, 0.93–1.47). Subgroup analyses according to ethnicity, however, detected significant association in Caucasian population. Our study provides evidence that p73 G4C14-to-A4T14 polymorphism may play a major role in susceptibility to lung cancer in Caucasians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hsu NY et al. Lung cancer susceptibility and genetic polymorphism of DNA repair gene XRCC4 in Taiwan. Cancer Biomark. 2009;5(4):159–65.

    CAS  PubMed  Google Scholar 

  2. Arslan S, Pinarbasi H, Silig Y. Myeloperoxidase G-463A polymorphism and risk of lung and prostate cancer in a Turkish population. Mol Med Rep. 2011;4(1):87–92.

    CAS  PubMed  Google Scholar 

  3. Pavanello S et al. Role of CYP1A2 polymorphisms on lung cancer risk in a prospective study. Cancer Genet. 2012;205(6):278–84.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y et al. Association between polymorphisms in COMT, PLCH1, and CYP17A1, and non-small-cell lung cancer risk in Chinese nonsmokers. Clin Lung Cancer. 2013;14(1):45–9.

    Article  PubMed  Google Scholar 

  5. Robles AI, Harris CC. p53-mediated apoptosis and genomic instability diseases. Acta Oncol. 2001;40(6):696–701.

    Article  CAS  PubMed  Google Scholar 

  6. Melino G et al. Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci. 2003;28(12):663–70.

    Article  CAS  PubMed  Google Scholar 

  7. Wang XQ et al. A possible role of p73 on the modulation of p53 level through MDM2. Cancer Res. 2001;61(4):1598–603.

    CAS  PubMed  Google Scholar 

  8. Kaghad M et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997;90(4):809–19.

    Article  CAS  PubMed  Google Scholar 

  9. Davis, P.K., and Dowdy, S. F., p73. Int. J. Biochem. Cell Biol., 2001. 33: p. 935.

  10. Nomoto S et al. Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers. Cancer Res. 1998;58(7):1380–3.

    CAS  PubMed  Google Scholar 

  11. Ikawa S, Nakagawara A, Ikawa Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 1999;6(12):1154–61.

    Article  CAS  PubMed  Google Scholar 

  12. Ibrahim N et al. BRCA1-associated epigenetic regulation of p73 mediates an effector pathway for chemosensitivity in ovarian carcinoma. Cancer Res. 2010;70(18):7155–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Moll UM, Erster S, Zaika A. p53, p63 and p73–solos, alliances and feuds among family members. Biochim Biophys Acta. 2001;1552(2):47–59.

    CAS  PubMed  Google Scholar 

  14. Marabese M, Vikhanskaya F, Broggini M. p73: a chiaroscuro gene in cancer. Eur J Cancer. 2007;43(9):1361–72.

    Article  CAS  PubMed  Google Scholar 

  15. Daskalos A et al. Global DNA hypomethylation-induced DeltaNp73 transcriptional activation in non-small cell lung cancer. Cancer Lett. 2011;300(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  16. Ryan BM et al. A common p73 polymorphism is associated with a reduced incidence of oesophageal carcinoma. Br J Cancer. 2001;85(10):1499–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Peters MA et al. Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer. Prostate. 2001;48(4):292–6.

    Article  CAS  PubMed  Google Scholar 

  18. Li G et al. p73 G4C14-to-A4T14 polymorphism and risk of lung cancer. Cancer Res. 2004;64(19):6863–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X et al. The p73 G4C14-to-A4T14 polymorphism is associated with risk of lung cancer in the Han nationality of North China. Mol Carcinog. 2013;52(5):387–91.

    Article  CAS  PubMed  Google Scholar 

  20. Hiraki A et al. Different risk relations with smoking for non-small-cell lung cancer: comparison of TP53 and TP73 genotypes. Asian Pac J Cancer Prev. 2003;4(2):107–12.

    PubMed  Google Scholar 

  21. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

    CAS  PubMed  Google Scholar 

  22. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  23. Egger M et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Choi JE et al. No association between p73 G4C14-to-A4T14 polymorphism and the risk of lung cancer in a Korean population. Biochem Genet. 2006;44(11–12):543–50.

    CAS  PubMed  Google Scholar 

  25. Schabath MB et al. Combined effects of the p53 and p73 polymorphisms on lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15(1):158–61.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan P et al. Association of the responsiveness of advanced non-small cell lung cancer to platinum-based chemotherapy with p53 and p73 polymorphisms]. Zhonghua Zhong Liu Za Zhi. 2006;28(2):107–10.

    CAS  PubMed  Google Scholar 

  27. Liu L et al. Combined effect of genetic polymorphisms in P53, P73, and MDM2 on non-small cell lung cancer survival. J Thorac Oncol. 2011;6(11):1793–800.

    Article  PubMed  Google Scholar 

  28. Hu Z et al. Dinucleotide polymorphism of p73 gene is associated with a reduced risk of lung cancer in a Chinese population. Int J Cancer. 2005;114(3):455–60.

    Article  CAS  PubMed  Google Scholar 

  29. Jun HJ et al. Combined effects of p73 and MDM2 polymorphisms on the risk of lung cancer. Mol Carcinog. 2007;46(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  30. Tomasini R, Mak TW, Melino G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol. 2008;18(5):244–52.

    Article  CAS  PubMed  Google Scholar 

  31. Wang L et al. Interplay between MDM2, MDMX, Pirh2 and COP1: the negative regulators of p53. Mol Biol Rep. 2011;38(1):229–36.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y et al. Association between the p73 exon 2 G4C14-to-A4T14 polymorphism and cancer risk: a meta-analysis. DNA Cell Biol. 2012;31(2):230–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liang, Y., Liao, H. et al. Association of p73 G4C14-to-A4T14 polymorphism with lung cancer risk. Tumor Biol. 35, 9311–9316 (2014). https://doi.org/10.1007/s13277-014-2061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2061-3

Keywords

Navigation