Skip to main content

Advertisement

Log in

Expression of flavonoid 6-hydroxylase candidate genes in normal and mutant soybean genotypes for glycitein content

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Soybean seeds accumulate large amounts of isoflavones (genistein, daidzein and glycitein), secondary metabolites known for their phytoestrogenic activities. Isoflavone composition depends on the seed part and glycitein is almost found exclusively in hypocotyls. Moreover, two major phenotypes are encountered in soybean cultivars, with either low (35 %) or high (55 %) levels of glycitein in their hypocotyls. This trait was under a quasi-mendelian heredity, implicating at most one or two genes. A CYP71D9 cDNA displaying a flavonoid 6-hydroxylase (F6H) activity had previously been isolated from elicitor-induced soybean (Glycine max L.) cells. This enzyme allows the synthesis of the glycitein flavanone intermediate (6,7,4′- trihydroxyflavanone) by catalyzing the A-ring hydroxylation of liquiritigenin. In this study, the CYP71D9 gene (F6H1) and two other candidates (F6H2 and F6H3) were studied using contrasted soybean cultivars for glycitein content (0, 35, 55 and 80 %). Their expression was observed in chitosan elicited leaves. They encode P450 proteins of 496, 469 and 481 amino acids respectively and were expressed in leaves with or without elicitation. The expression patterns of these three genes were performed in cotyledons and hypocotyls at different developmental stages. F6H1 and F6H2 were not expressed in the developing seed. F6H3 was only expressed in hypocotyls. Its expression levels did not correlate with hypocotyls glycitein content, but it was not expressed in the null mutant for glycitein. Thus, this F6H3 gene is a good potential candidate for glycitein biosynthesis in soybean seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48(2):261–273. doi:10.1111/j.1365-313X.2006.02874.x

    Article  PubMed  CAS  Google Scholar 

  2. Graham TL, Graham MY (1996) Signaling in soybean phenylpropanoid responses (dissection of primary, secondary, and conditioning effects of light, wounding, and elicitor treatments). Plant Physiol 110(4):1123–1133

    PubMed  CAS  Google Scholar 

  3. Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11(6):829–846. doi:10.1111/j.1364-3703.2010.00648.x

    PubMed  CAS  Google Scholar 

  4. Messina M, Watanabe S, Setchell KDR (2009) Report on the 8th international symposium on the role of soy in health promotion and chronic disease prevention and treatment. J Nutr 139(4):796S–802S

    Article  PubMed  CAS  Google Scholar 

  5. Ferrari A (2009) Soy extract phytoestrogens with high dose of isoflavones for menopausal symptoms. J Obstet Gynaecol Res 35(6):1083–1090. doi:10.1111/j.1447-0756.2009.01058.x

    Article  PubMed  CAS  Google Scholar 

  6. Song TT, Hendrich S, Murphy PA (1999) Estrogenic activity of glycitein, a soy isoflavone. J Agric Food Chem 47(4):1607–1610

    Article  PubMed  CAS  Google Scholar 

  7. Gutierrez-Zepeda A, Santell R, Wu Z, Brown M, Wu Y, Khan I, Link C, Zhao B, Luo Y (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 6:54. doi:10.1186/1471-2202-6-54

    Article  PubMed  Google Scholar 

  8. Kang KA, Zhang R, Piao MJ, Lee KH, Kim BJ, Kim SY, Kim HS, Kim DH, You HJ, Hyun JW (2007) Inhibitory effects of glycitein on hydrogen peroxide induced cell damage by scavenging reactive oxygen species and inhibiting c-Jun N-terminal kinase. Free Radic Res 41(6):720–729. doi:10.1080/10715760701241618

    Article  PubMed  CAS  Google Scholar 

  9. Chang FR, Hayashi K, Chua NH, Kamio S, Huang ZY, Nozaki H, Wu YC (2005) The transgenic arabidopsis plant system, pER8-GFP, as a powerful tool in searching for natural product estrogen-agonists/antagonists. J Nat Prod 68(7):971–973. doi:10.1021/np050121i

    Article  PubMed  CAS  Google Scholar 

  10. Sakamoto T, Horiguchi H, Oguma E, Kayama F (2010) Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem 21(9):856–864. doi:10.1016/j.jnutbio.2009.06.010

    Article  PubMed  CAS  Google Scholar 

  11. Ruefer C, Maul R, Donauer E, Fabian E, Kulling S (2007) In vitro and in vivo metabolism of the soy isoflavone glycitein. Mol Nutr Food Res 51(7):813–823

    Article  CAS  Google Scholar 

  12. Magee PJ, McGlynn H, Rowland IR (2004) Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Lett 208(1):35–41. doi:10.1016/j.canlet.2003.11.012

    Article  PubMed  CAS  Google Scholar 

  13. Clubbs EA, Bomser JA (2009) Basal cell induced differentiation of noncancerous prostate epithelial cells (RWPE-1) by glycitein. Nutr Cancer 61(3):390–396. doi:10.1080/01635580802582728

    Article  PubMed  CAS  Google Scholar 

  14. Kim MH, Gutierrez AM, Goldfarb RH ((2002)) Different mechanisms of soy isoflavones in cell cycle regulation and inhibition of invasion. Anticancer Res 22(6C):3811–3817

    Google Scholar 

  15. Lee EJ, Kim SY, Hyun JW, Min SW, Kim DH, Kim HS (2010) Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chem Biol Interact 185(1):18–24. doi:10.1016/j.cbi.2010.02.037

    Article  PubMed  CAS  Google Scholar 

  16. Kim JA, Chung IM (2007) Change in isoflavone concentration of soybean (Glycine max L.) seeds at different growth stages. J Sci Food Agric 87(3):496–503

    Article  CAS  Google Scholar 

  17. Berger M, Rasolohery CA, Cazalis R, Dayde J (2008) Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: distinct pathways and genetic controls. Crop Sci 48(2):700–708. doi:10.2135/cropsci2007.08.0431

    Article  CAS  Google Scholar 

  18. Rasolohery CA, Berger M, Lygin AV, Lozovaya VV, Nelson RL, Dayde J (2008) Effect of temperature and water availability during late maturation of the soybean seed on germ and cotyledon isoflavone content and composition. J Sci Food Agric 88(2):218–228. doi:10.1002/jsfa.3075

    Article  CAS  Google Scholar 

  19. Dayde J, Berger M, Theodorou V (2004) Screening and breeding soybeans for isoflavone content and composition. In: VII world soybean research conference—VI international soybean processing and utilization conference—III congresso brasileiro de soja, Proceedings pp 845–851

  20. Khan W, Prithiviraj B, Smith DL (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160(8):859–863

    Article  PubMed  CAS  Google Scholar 

  21. Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agron 86:147–190. doi:10.1016/s0065-2113(05)86003-1

    Article  CAS  Google Scholar 

  22. Clough SJ, Tuteja JH, Li M, Marek LF, Shoemaker RC, Vodkin LO (2004) Features of a 103 kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome 47(5):819–831. doi:10.1139/g04-049

    Article  PubMed  CAS  Google Scholar 

  23. Tuteja JH, Vodkin LO (2008) Structural features of the endogenous CHS silencing and target loci in the soybean genome. Crop Sci 48:S49–S68. doi:10.2135/cropsci2007.10.0542tpg

    Article  CAS  Google Scholar 

  24. Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137(4):1375–1388

    Article  PubMed  CAS  Google Scholar 

  25. Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P450 monooxygenase. J Biol Chem 276(3):1688–1695. doi:10.1074/jbc.M006277200

    PubMed  CAS  Google Scholar 

  26. Schopfer CR, Ebel J (1998) Identification of elicitor-induced cytochrome P450 s of soybean (Glycine max L.) using differential display of mRNA. Mol Gen Genet 258(4):315–322

    Article  PubMed  CAS  Google Scholar 

  27. Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4 (1):59–65. http://drnelson.uthsc.edu/CytochromeP450.html. Accessed 17 June 2012

    Google Scholar 

  28. Akashi T, Aoki T, Ayabe S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121(3):821–828. doi:10.1104/pp.121.3.821

    Article  PubMed  CAS  Google Scholar 

  29. Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367(1):146–150. doi:10.1006/abbi.1999.1238

    Article  PubMed  CAS  Google Scholar 

  30. Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212

    Article  PubMed  CAS  Google Scholar 

  31. Goldberg B, Harada J (2009) Gene networks in seed development. http://seedgenenetwork.net/. Accessed 21 May 2012

  32. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183. doi:10.1038/nature08670

    Article  PubMed  CAS  Google Scholar 

  33. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Ac Res 16(22):10881–10890

    Article  CAS  Google Scholar 

  34. Rozen S, Skaletsky H (2000) Primer3 on the www for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  35. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucl Ac Symp Ser 41:95–98

    CAS  Google Scholar 

  36. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  37. Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137(4):1345–1353

    Article  PubMed  CAS  Google Scholar 

  38. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1(6):3003.1–3003.9

    Article  Google Scholar 

  39. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. doi:10.1016/0022-2836(82)90515-0

    Article  PubMed  CAS  Google Scholar 

  40. Gideon DA, Kumari R, Lynn AM, Manoj KM (2012) What is the Functional Role of N-terminal transmembrane helices in the metabolism mediated by liver microsomal cytochrome P450 and its reductase? Cell Biochem Biophys 63(1):35–45. doi:10.1007/s12013-012-9339-0

    Article  CAS  Google Scholar 

  41. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3(5):371–390. doi:10.1046/j.1364-3703.2002.00131.x

    Article  PubMed  CAS  Google Scholar 

  42. Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16(12):1118–1128. doi:10.1094/MPMI.2003.16.12.1118

    Article  PubMed  CAS  Google Scholar 

  43. Kudou S, Shimoyamada M, Imura T, Uchida T, Okubo K (1991) A new isoflavone glycoside in soybean seeds (Glycine max L. Merrill), glycitein 7-O-beta-D-(6″-O-acetyl)-glucopyranoside. Agric Biol Chem 55(3):859–860

    Article  CAS  Google Scholar 

  44. Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K (1995) Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty-acids at different temperatures during seed development. J Agric Food Chem 43(5):1184–1192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christel Couderc and Daphné Puech for their help and technical assistance. This project was supported by research grants from the Midi-Pyrénées Région. The authors thank Pr Randall Nelson, curator of the USDA soybean germplasm collection (Urbana, IL), for the supply of the accession used in this study and the French group Euralis Semences for the supply of their germplasm accessions NS Kasha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Berger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artigot, MP., Baes, M., Daydé, J. et al. Expression of flavonoid 6-hydroxylase candidate genes in normal and mutant soybean genotypes for glycitein content. Mol Biol Rep 40, 4361–4369 (2013). https://doi.org/10.1007/s11033-013-2526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2526-2

Keywords

Navigation