Skip to main content
Log in

The ubiquitin extension protein S27a is differentially expressed in developing flower organs of Thompson seedless versus Thompson seeded grape isogenic clones

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In Vitis vinifera L. cv. Thompson Seedless, fertilization occurs but seeds abort, a type of stenospermocarpy. To clone transcripts with differential expression during flower development, suppressive subtractive hybridization was carried out using two isogenic clones ‘Thompson seedless’ and ‘Thompson seeded’, at three stages of inflorescence development (from bud break to ~20 days prior to anthesis). Differential screening and sequencing of a forward and reverse subtractive cDNA library yielded several singleton ESTs. One differentially expressed clone in ‘Thompson’ seeded versus seedless isogenic clones was the ubiquitin extension protein S27a. In situ hybridization demonstrated its significantly higher expression in the carpel and ovaries of ‘Thompson’ seedless versus seeded isogenic clones during flower development. Overexpression of this gene resulted in abnormal plant regeneration and inhibited shoot development compared to controls; its silencing in embryogenic callus induced cell necrosis and callus death, evidencing tight regulation of this gene in developing organs of grape. S27a overexpression in carpels and integuments of the seedless flower may interfere with normal development of these organs, leading to embryo abortion and seedlessness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker RT, Varshavsky A (1991) Inhibition of the N-end rule pathway in living cells. Proc Natl Acad Sci USA 88:1090–1094

    Article  PubMed  CAS  Google Scholar 

  • Bharathy PV, Karibasappa GS, Patil SG, Agrawal DC (2005) In ovulo rescue of hybrid embryos in flame seedless grapes—influence of pre-bloom sprays of benzyladenine. Sci Hortic 106:353–359

    Article  CAS  Google Scholar 

  • Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Buckeridge EJ, Poole A, Thomas MR (2003) New insight into grapevine flowering. Funct Plant Biol 30:593–606

    Article  CAS  Google Scholar 

  • Boss PK, Sreekantan L, Thomas MR (2006) A grapevine TFL1 homologue can delay flowering and alter floral development when over-expressed in heterologous species. Funct Plant Biol 33:31–41

    Article  CAS  Google Scholar 

  • Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol 3:381–386

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    PubMed  CAS  Google Scholar 

  • Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Cubas P, Martinez-Zapater JM (2002) VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol 130:68–77

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Calonje M, Martinez-Zapater JM (2007) The FT/TLF1 gene family in grapevine. Plant Mol Biol 63:637–650

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2005) Hyperhydricity in apple: ultrastructural and physiological aspects. Tree Physiol 26:377–388

    Article  Google Scholar 

  • Chatelet P, Laucou V, Fernandez L, Sreekantan L, Lacombe T, Martinez-Zapater JM, Thomas MR, Torregrosa L (2007) Characterization of Vitis vinifera L. somatic variants exhibiting abnormal flower development patterns. J Exp Bot 58:4107–4118

    Article  PubMed  CAS  Google Scholar 

  • Constantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. MBC Plant Biol 8:38

    Google Scholar 

  • Coombe BG (1988) Grape phenology. In: Coombe BG, Dry PR (eds) Viticulture, vol 1. Resources Winetitles, Adelaide, pp 139–153

    Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukvanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125

    Article  CAS  Google Scholar 

  • Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905–917

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Romieu C, Moing A, Bouquet A, Maucourt M, Thomas MR, Torregrosa L (2006) The grapevine fleshless berry mutation: a unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Physiol 140:537–547

    Article  PubMed  CAS  Google Scholar 

  • Fougere-Rifot M, Benharbit El-Alami N, Brun O, Bourad J (1995) Ontogenesis of the gynoecium of Vitis vinifera L. var. Chardonnay in relation to the appearance of tannic vacuoles. J Int Sci Vigne Vin 29:105–130

    CAS  Google Scholar 

  • Garbarino JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127

    Article  PubMed  CAS  Google Scholar 

  • Hanania U, Velcheva M, Sahar N, Perl A (2004) An improved method for isolation of high-quality DNA from Vitis vinifera. Plant Mol Biol Rep 22:173–177

    Article  Google Scholar 

  • Hanania U, Velcheva M, Or E, Flaishman M, Sahar N, Perl A (2007) Silencing of Chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits. Transgenic Res 16:515–525

    Article  PubMed  CAS  Google Scholar 

  • Hanania U, Velcheva M, Sahar N, Flaishman M, Or E, Dgani O, Perl A (2009) Suppression and over-expression of ubiquitin extension protein S27a affects proliferation and differentiation of Nicotiana benthamiana. Plant Sci 176:566–574

    Google Scholar 

  • Hardie WJ, O’Brien TP, Jaudzems VG (1996) Morphology, anatomy and development of the pericarp after anthesis in grape, Vitis vinifera L. Aust J Grape Wine Res 2:97–142

    Article  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  PubMed  CAS  Google Scholar 

  • Jackson D (1991) In situ hybridization in plants. In: Bowels DJ, Gurr SJ, McPherson M (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, pp 163–174

    Google Scholar 

  • Jianru Z, Qi-Wen N, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  Google Scholar 

  • Jonnalagadda S, Butt TR, Monia BP, Mirabelli CK, Gotlib L, Ecker DJ, Crooke ST (1989) Multiple (alpha-NH-ubiquitin) protein endoproteases in cells. J Biol Chem 264:10637–10642

    PubMed  CAS  Google Scholar 

  • Kadota M, Niimi Y (2003) Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell Tissue Organ Cult 72:261–265

    Article  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Korkutal I (2005) Embryo abortion in some new seedless table grape (Vitis vinifera L.) varieties. Int J Bot 1:1–4

    Article  Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959

    Article  CAS  Google Scholar 

  • Ledbetter CA, Ramming DW (1989) Seedlessness in grapes. Hortic Rev 11:159–184

    Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • Lund PK, Moats-Staats BM, Simmons JG, Hoyt E, D’Ercole AJ, Martin F, Van Wyk JJ (1985) Nucleotide sequence analysis of a cDNA encoding human ubiquitin reveals that ubiquitin is synthesized as a precursor. J Biol Chem 12:7609–7613

    Google Scholar 

  • Mejia N, Gebauer M, Munoz L, Hewstone N, Munoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. Am J Enol Vitic 58:499–507

    Google Scholar 

  • Ozkaynak E, Finley D, Solomon MJ, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439

    PubMed  CAS  Google Scholar 

  • Pautot V, Dockx J, Hamant O, Kronenberger J, Grandjean O, Jublot D, Traas J (2001) KNAT2: evidence for a link between knotted-like genes and carpel development. Plant Cell 13:1719–1734

    Article  PubMed  CAS  Google Scholar 

  • Perl A, Eshdat Y (1998) DNA transfer and gene expression in transgenic grapes. In: Tombs MP (ed) Biotechnology and genetic engineering reviews, vol 15. Intercept Publishers, UK, pp 365–386

    Google Scholar 

  • Perl A, Eshdat Y (2007) Grapes. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry—transgenic crops V, vol 60. Springer, Berlin, pp 189–208

    Google Scholar 

  • Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  PubMed  CAS  Google Scholar 

  • Pratt C (1971) Reproductive anatomy in cultivated grape—a review. Am J Enol Vitic 22:92–109

    Google Scholar 

  • Sessions RA, Zambryski PC (1995) Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 121:1519–1532

    PubMed  CAS  Google Scholar 

  • Sreekantan L, Torregrosa L, Fernandez L, Thomas MR (2006) VvMADS9, a class B MADS-box gene involved in grapevine flowering, shows different expression patterns in mutants with abnormal petal and stamen structures. Funct Plant Biol 33:877–886

    Article  CAS  Google Scholar 

  • Srinivasan C, Mullins MG (1981) Physiology of flowering in the grapevine: a review. Am J Enol Vitic 32:47–63

    CAS  Google Scholar 

  • Stout AB (1936) Seedlessness in grapes. NY State Agriculture Experimental Station Tech Bull. Geneva, NY

  • Striem MJ, Spiegel-Roy P, Baron I, Sahar N (1992) The degrees of development of seed-coat and the endosperm as separate subtraits of stenospermocarpic seedlessness in grape. Vitis 31:149–155

    Google Scholar 

  • Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis SeedGenes project. Nucleic Acids Res 31:90–93

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Colleen Sweeney T, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  PubMed  CAS  Google Scholar 

  • van Engelen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290

    Article  PubMed  Google Scholar 

  • Wang J, Horiuchi S (1990) A histological study on the seedlessness in “Himrod Seedless’ grape. J Jpn Soc Hortic Sci 59:455–462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avihai Perl.

Additional information

Communicated by F. Brandizzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanania, U., Velcheva, M., Sahar, N. et al. The ubiquitin extension protein S27a is differentially expressed in developing flower organs of Thompson seedless versus Thompson seeded grape isogenic clones. Plant Cell Rep 28, 1033–1042 (2009). https://doi.org/10.1007/s00299-009-0715-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0715-1

Keywords

Navigation