Skip to main content
Log in

Temporal and spatial expression analysis of PRGL in Gerbera hybrida

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

GASA-like genes form multigene families in diverse plant species and encode the proteins with a unique cysteine-rich domain (GASA domain). In our previously work, we cloned a GASA-like gene PRGL (Proline-rich GASA-like) from gerbera. Here we report the expression profiles of PRGL and the subcellular localization of PRGL protein. Multiple sequence alignment of the GASA domains indicates that PRGL shows the highest homology to AtPRGL (73.3% of amino acid identity) from Arabidopsis. Phylogenic analysis based on the full amino acid sequences indicates that PRGL and AtPRGL belong to a novel subfamily of GASA proteins. Northern blot assay showed that PRGL is highly expressed in young flower, young leaf and young root, whereas hardly detected when these organs became mature. Furthermore, in young inflorescence, PRGL transcript accumulation only occurred in the fast elongation organs such as scape, ray floret petal and disc floret petal. Western blot and immunolocalization assay revealed that PRGL protein is located in cell wall and high level accumulation of PRGL was found to correlate with the fast organ elongation in scape. Our results suggest that PRGL participates in the regulation of cell elongation during the development of Gerbera hybrida plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi L, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot-specific, GA3-and ABA-regulated gene from tomato. Plant J 2:153–159

    CAS  PubMed  Google Scholar 

  2. Herzog M, Dorne A, Grellet F (1995) GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743–752

    Article  CAS  PubMed  Google Scholar 

  3. Aubert D, Chevillard M, Dorne A-M, Arlaud G, Herzog M (1998) Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Mol Biol 36:871–883

    Article  CAS  PubMed  Google Scholar 

  4. Furukawa T, Sakaguchi N, Shimada H (2006) Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst 81:171–180

    Article  CAS  PubMed  Google Scholar 

  5. Ben-Nissan G, Lee J-Y, Borohov A, Weiss D (2004) GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37:229–238

    CAS  PubMed  Google Scholar 

  6. Wigoda N, Ben-Nissan G, Granot D, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J 48:796–805

    Article  CAS  PubMed  Google Scholar 

  7. de la Fuente JI, Amaya I, Castillejo C, Sanchez-Sevilla JF, Quesada MA, Botella MA, Valpuesta V (2006) The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. J Exp Bot 57:2401–2411

    Article  PubMed  Google Scholar 

  8. Roxrud I, Lid SE, Fletcher JC, Schmidt EDL, Opsahl-Sorteberg H-G (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471–483

    Article  CAS  PubMed  Google Scholar 

  9. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  CAS  PubMed  Google Scholar 

  10. Wilson RC, Long F, Maruoka EM, Cooper JB (1994) A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. Plant Cell 6:1265–1275

    Article  CAS  PubMed  Google Scholar 

  11. Sheng J, D’Ovidio R, Mehdy MC (1991) Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J 1:345–354

    Article  CAS  PubMed  Google Scholar 

  12. Santino CG, Stanford GL, Conner TW (1997) Developmental and transgenic analysis of two tomato fruit enhanced genes. Plant Mol Biol 33:405–416

    Article  CAS  PubMed  Google Scholar 

  13. Fowler TJ, Bernhardt C, Tierney ML (1999) Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol 121:1081–1091

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Verner JE (1985) Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein. Proc Natl Acad Sci USA 82:4399–4403

    Article  CAS  PubMed  Google Scholar 

  15. Tierney ML, Wiechert J, Pluymers D (1988) Analysis of the expression of extensin and p33-related cell wall proteins in carrot and soybean. Mol Gen Genet 211:393–399

    Article  CAS  Google Scholar 

  16. Kleis-San Francisco SM, Tierney ML (1990) Isolation and characterization of a proline-rich cell wall protein from soybean seedlings. Plant Physiol 94:1897–1902

    Article  CAS  Google Scholar 

  17. Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30

    Article  CAS  PubMed  Google Scholar 

  18. Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    Article  CAS  PubMed  Google Scholar 

  19. Bindschedler LV, Whitelegge JP, Millar DJ, Bolwell GP (2006) A two component chitin-binding protein from French bean-association of a proline-rich protein with a cysteine-rich polypeptide. FEBS Lett 580:1541–1546

    Article  CAS  PubMed  Google Scholar 

  20. Battaglia M, Solórzano R, Hernández M, Cuéllar-Ortiz S, García-Gómez B, Márquez J, Covarrubias A (2007) Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta 225:1121–1133

    Article  CAS  PubMed  Google Scholar 

  21. Bernhardt C, Tierney ML (2000) Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol 122:705–714

    Article  CAS  PubMed  Google Scholar 

  22. Mang HG, Lee J-H, Park J-A, Pyee J, Pai H-S, Lee J, Kim WT (2004) The CaPRP1 gene encoding a putative proline-rich glycoprotein is highly expressed in rapidly elongating early roots and leaves in hot pepper (Capsicum annuum L. cv. Pukang). Biochim Biophys Acta 1674:103–108

    CAS  PubMed  Google Scholar 

  23. Zhang SC, Wang XJ (2008) Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chin Sci Bull 53:3839–3846

    Article  CAS  Google Scholar 

  24. Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11:1093–1104

    Article  CAS  PubMed  Google Scholar 

  25. Peng JZ, Lai LJ, Wang XJ (2008) PRGL: a cell wall proline-rich protein containing GASA domain in Gerbera hybrida. Sci China C Life Sci 51:520–525

    Article  CAS  PubMed  Google Scholar 

  26. Meng XC, Wang XJ (2004) Regulation of flower development and anthocyanin accumulation in Gerbera hybrida. J Hortic Sci Biotech 79:131–137

    CAS  Google Scholar 

  27. Hong JC, Nagao RT, Key JL (1987) Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean. J Biol Chem 262:8367–8376

    CAS  PubMed  Google Scholar 

  28. Zhang SC, Yang CW, Peng JZ, Sun SL, Wang XJ (2009) GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol Biol 69:745–759

    Article  CAS  PubMed  Google Scholar 

  29. Hall Q, Cannon MC (2000) The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 14:1161–1172

    Article  Google Scholar 

  30. Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport DTA, Chen Y, Kieliszewski MJ (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105:2226–2231

    Article  CAS  PubMed  Google Scholar 

  31. Zhang XL, Ren YJ, Zhao J (2008) Roles of extensins in cotyledon primordium formation and shoot apical meristem activity in Nicotiana tabacum. J Exp Bot 59:4045–4058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Nature Science Foundation of China (No. 30570165) and Guangdong Natural Science Foundation in China (No. 9251063101000002, 2006A20101007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Lai, L. & Wang, X. Temporal and spatial expression analysis of PRGL in Gerbera hybrida . Mol Biol Rep 37, 3311–3317 (2010). https://doi.org/10.1007/s11033-009-9917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9917-4

Keywords

Navigation