Skip to main content
Log in

PRGL: A cell wall proline-rich protein containning GASA domain in Gerbera hybrida

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

PRPs (proline-rich proteins) are a group of cell wall proteins characterized by their proline and hydroproline-rich repetitive peptides. The expression of PRPs in plants is stimulated by wounding and environmental stress. GASA (gibberellic acid stimulated in Arabidopsis) proteins are small peptides sharing a 60 amino acid conserved C-terminal domain containing twelve invariant cysteine residues. Most of GASAs reported are localized to apoplasm or cell wall and their expression was regulated by gibberellins (GAs). It has been reported that, in French bean, these two proteins encoding by two distinct genes formed a two-component chitin-receptor involved in plant-pathogen interactions when plant was infected. We cloned a full-length cDNA of PRGL (proline-rich GASA-like) gene which encodes a protein containing both PRP and GASA-like domains. It is demonstrated that PRGL is a new protein with characteristics of PRP and GASA by analyzing its protein structure and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keller B. Structural cell wall proteins. Plant Physiol, 1993, 101(4): 1127–1130, 12231763, 1:CAS:528:DyaK3sXisFWnsrw%3D

    CAS  Google Scholar 

  2. Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J, 1993, 3(1): 1–30, 8401598, 10.1111/j.1365-313X.1993.tb00007.x, 1:CAS:528:DyaK3sXitV2gtLk%3D

    Article  CAS  Google Scholar 

  3. McQueen-Mason S J, Cosgrove D J. Expansin mode of action on cell walls (Analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol, 1995, 107(1): 87–100, 11536663, 1:CAS:528:DyaK2MXjtVOms7s%3D

    CAS  Google Scholar 

  4. Wu Y, Cosgrove D J. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot, 2000, 51(350): 1543–1553, 11006305, 10.1093/jexbot/51.350.1543, 1:CAS:528:DC%2BD3cXnt12jurk%3D

    Article  CAS  Google Scholar 

  5. Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding pPlant cell walls. Science, 2004, 306(5705): 2206–2211, 15618507, 10.1126/science.1102765, 1:CAS:528:DC%2BD2cXhtFSjtrvO

    Article  CAS  Google Scholar 

  6. Goodwin W, Pallas J A, Jenkins G I. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol Biol, 1996, 31(4): 771–781, 8806408, 10.1007/BF00019465, 1:CAS:528:DyaK28XlslClsbY%3D

    Article  CAS  Google Scholar 

  7. Györgyey J, Németh K, Magyar Z, et al. Expression of a novel-type small proline-rich protein gene of alfalfa is induced by 2,4-dichlorophenoxiacetic acid in dedifferentiated callus cells. Plant Mol Biol, 1997, 34(4): 593–602, 9247541, 10.1023/A:1005845412667

    Article  Google Scholar 

  8. Han Y, Gómez-Vásquez R, Reilly K, et al. Hydroxyproline-rich glycoproteins expressed during stress responses in cassava. Euphytica, 2001, 120(1): 59–70, 10.1023/A:1017547419332, 1:CAS:528:DC%2BD3MXms1Shtrw%3D

    Article  CAS  Google Scholar 

  9. Otte O, Barz W. Characterization and oxidative in vitro cross-linking of an extensin-like protein and a proline-rich protein purified from chickpea cell walls. Phytochemistry, 2000, 53(1): 1–5, 10656400, 10.1016/S0031-9422(99)00463-X, 1:CAS:528:DC%2BD3cXotVymsw%3D%3D

    Article  CAS  Google Scholar 

  10. Bradley D J, Kjellbom P, Lamb C J. Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response. Cell, 1992, 70(1): 21–30, 1623521, 10.1016/0092-8674(92)90530-P, 1:CAS:528:DyaK38XlvVygtLk%3D

    Article  CAS  Google Scholar 

  11. Brisson L F, Tenhaken R, Lamb C. Function of oxidative cross-Linking of cell wall structural proteins in plant disease resistance. Plant Cell, 1994, 6(12): 1703–1712, 12244231, 10.1105/tpc.6.12.1703, 1:CAS:528:DyaK2MXivVWkt7o%3D

    Article  CAS  Google Scholar 

  12. Shi L, Gast R T, Gopalraj M, et al. Characterization of a shoot-specific, GA3-and ABA-regulated gene from tomato. Plant J, 1992, 2(2): 153–159, 1302047, 1:CAS:528:DyaK3sXkt1Wltrs%3D

    CAS  Google Scholar 

  13. Taylor B H, Scheuring C F. A molecular marker for lateral root initiation: the RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia. Mol Gen Genet, 1994, 243(2): 148–157, 8177211, 1:CAS:528:DyaK2cXkslKmt7c%3D

    CAS  Google Scholar 

  14. Ben-Nissan G, Lee J-Y, Borohov A, et al. GIP, a Petunia hybrida GA-induced cysteine-rich protein: A possible role in shoot elongation and transition to flowering. Plant J, 2004, 37(2): 229–238, 14690507, 1:CAS:528:DC%2BD2cXhsVGltbc%3D

    Article  CAS  Google Scholar 

  15. Ben-Nissan G, Weiss D. The petunia homologue of tomato gast1: Transcript accumulation coincides with gibberellin-induced corolla cell elongation. Plant Mol Biol, 1996, 32(6): 1067–1074, 9002605, 10.1007/BF00041390, 1:CAS:528:DyaK2sXovFajtA%3D%3D

    Article  CAS  Google Scholar 

  16. Segura A, Moreno M, Madueno F, et al. Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact, 1999, 12(1): 16–23, 9885189, 10.1094/MPMI.1999.12.1.16, 1:CAS:528:DyaK1MXhtFGls7Y%3D

    Article  CAS  Google Scholar 

  17. Berrocal-Lobo M, Segura A, Moreno M, et al. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol, 2002, 128(3): 951–961., 11891250, 10.1104/pp.010685, 1:CAS:528:DC%2BD38Xit1Gqt7s%3D

    Article  CAS  Google Scholar 

  18. Furukawa T, Sakaguchi N, Shimada H. Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst, 2006, 81(3): 171–180, 16905871, 10.1266/ggs.81.171, 1:CAS:528:DC%2BD28XhtFKmu77I

    Article  CAS  Google Scholar 

  19. Kotilainen M, Helariutta Y, Mehto M, et al. GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell, 1999, 11(6): 1093–1104, 10368180, 10.1105/tpc.11.6.1093, 1:CAS:528:DyaK1MXksFOmtbc%3D

    Article  CAS  Google Scholar 

  20. de la Fuente JI, Amaya I, Castillejo C, et al. The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. J Exp Bot, 2006, 57(10): 2401–2411, 16804055, 10.1093/jxb/erj213, 1:CAS:528:DC%2BD28XnvF2lsrs%3D

    Article  Google Scholar 

  21. Herzog M, Dorne A, Grellet F. GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol, 1995, 27(4): 743–752, 7727751, 10.1007/BF00020227, 1:CAS:528:DyaK2MXlt1Wnu7o%3D

    Article  CAS  Google Scholar 

  22. Aubert D, Chevillard M, Dorne A-M, et al. Expression patterns of GASA genes in Arabidopsis thaliana: The GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Mol Biol, 1998, 36(6): 871–883, 9520278, 10.1023/A:1005938624418, 1:CAS:528:DyaK1cXitFaitbs%3D

    Article  CAS  Google Scholar 

  23. Meng X C, Wang X J. Regulation of flower development and anthocyanin accumulation in Gerbera hybrida. J Hort Sci Biotech, 2004, 79: 131–137, 1:CAS:528:DC%2BD2cXhtlGmsLY%3D

    CAS  Google Scholar 

  24. Melan M A, Cosgrove D J. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth. Plant Physiol, 1988, 86(2): 469–474, 11538235, 1:CAS:528:DyaL1cXhs1Crtbk%3D, 10.1104/pp.86.2.469

    Article  CAS  Google Scholar 

  25. Voigt J, Frank R. Proteins are constituents of the insoluble glycoprotein framework of the chlamydomonas cell wall. Plant Cell, 2003, 15(6): 1399–1413, 12782732, 10.1105/tpc.010611, 1:CAS:528:DC%2BD3sXkvVektro%3D

    Article  CAS  Google Scholar 

  26. He Z H, Fujiki M, Kohorn B D. A cell wall-associated, receptor-like protein kinase. J Biol Chem, 1996, 271(33): 19789–19793, 8702686, 10.1074/jbc.271.33.19789, 1:CAS:528:DyaK28XltVKrsr0%3D

    Article  CAS  Google Scholar 

  27. Ebener W, Fowler T J, Suzuki H, et al. Expression of DcPRP1 is linked to carrot storage root formation and is induced by wounding and auxin treatment. Plant Physiol, 1993, 101(1): 259–265, 8278498, 10.1104/pp.101.1.259, 1:CAS:528:DyaK3sXhvVOqur0%3D

    Article  CAS  Google Scholar 

  28. Sheng J, D’Ovidio R, Mehdy M C. Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J, 1991, 1(3): 345–354, 1844887, 10.1046/j.1365-313X.1991.t01-3-00999.x, 1:STN:280:DyaK3s3ltFWjsA%3D%3D

    Article  CAS  Google Scholar 

  29. Showalter A M, Zhou J, Rumeau D, et al. Tomato extensin and extensin-like cDNAs: Structure and expression in response to wounding. Plant Mol Biol, 1991, 16(4): 547–565, 1714316, 10.1007/BF00023421, 1:CAS:528:DyaK38Xhs1CltQ%3D%3D

    Article  CAS  Google Scholar 

  30. Suzuki H, Wagner T, Tierney M L. Differential expression of two soybean (Glycine max L.) proline-rich protein genes after wounding. Plant Physiol, 1993, 101(4): 1283–1287, 12231783, 1:CAS:528:DyaK3sXisFWmtb8%3D

    CAS  Google Scholar 

  31. Bindschedler L V, Whitelegge J P, Millar D J, et al. A two component chitin-binding protein from French bean — Association of a proline-rich protein with a cysteine-rich polypeptide. FEBS Letters, 2006, 580(6): 1541–1546, 16480721, 10.1016/j.febslet.2006.01.079, 1:CAS:528:DC%2BD28XhvVehu7c%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJing Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30570165) and Natural Science Foundation of Guangdong Province of China (Grant Nos. 5005912 and 2006A20101007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Lai, L. & Wang, X. PRGL: A cell wall proline-rich protein containning GASA domain in Gerbera hybrida. SCI CHINA SER C 51, 520–525 (2008). https://doi.org/10.1007/s11427-008-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0067-z

Keywords

Navigation