Skip to main content
Log in

Improving rice yield and quality by QTL pyramiding

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

To facilitate marker-assisted transfer of desirable genes for improvement of yield traits, we used a set of backcross recombinant inbred lines (BRIL) derived from two elite parental lines, ‘Zhenshan97’ and ‘93-11’, to resolve a quantitative trait loci (QTL) cluster for heading date and yield-related traits in rice. Four main-effect QTL (qHD6.1, qHD6.2, qHD7, and qHD8) and four epistatic QTL affecting heading date in the BRIL were detected in two experimental trials. The major QTL (qHD8) was confirmed in three heterogeneous inbred families (HIF) that segregated for this target region, and narrowed down to a 20-kb segment in a large HIF-derived population. qHD8 was found to interact with qHD7 and had a pleiotropic effect responsible for heading date and yield components. To test usability of the identified QTL in rice improvement, we further developed near-isogenic lines (NIL) containing one or more target genes by marker-assisted transfer of ‘93-11’ alleles at qHD8, qHD7, and qHD6.1, and the GS3 gene for grain size into ‘Zhenshan97’. The pyramid line NIL(qHD8 + GS3) had higher yield potential, longer grains, and a more suitable heading date than ‘Zhenshan97’. Comparison of the NIL showed existence of epistasis between alleles at different loci and background effect on qHD8, which are very important for pyramiding of desirable alleles at the target QTL. These results will be particularly useful not only to understand the genetic basis of yield-related traits but also to improve the efficiency of marker-assisted selection for favorable loci in rice breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ando T, Yamamoto T, Shimizu T, Ma XF, Shomura A, Takeuchi Y, Lin SY, Yano M (2008) Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet 116:881–890

    Article  PubMed  Google Scholar 

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310

    Article  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Araki E, Osaki M, Khush GS, Fukuta Y (2006) Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice (Oryza sativa L.). Field Crops Res 96:106–112

    Article  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    Article  PubMed  CAS  Google Scholar 

  • Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  • Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153

    Article  PubMed  CAS  Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028

    Article  CAS  Google Scholar 

  • Lin HX, Ashikari M, Yamanouchi U, Yano M (2002) Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci 52:35–41

    Article  CAS  Google Scholar 

  • Lin HX, Liang ZW, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53:51–59

    Article  CAS  Google Scholar 

  • Maas LF, McClung A, McCouch SR (2010) Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet 120:895–908

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, CGSNL (Committee on Gene Symbolization, Nomenclature, Linkage, Rice Genetics Cooperative) (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778

    Article  PubMed  CAS  Google Scholar 

  • Ohsumi A, Takai T, Ida M, Yamamoto T, Arai-Sanoh Y, Yano M, Ando T, Kondo M (2011) Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. Field Crops Res 120:68–75

    Article  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • StatSoft (1997) Statistica. StatSoft Incorporated, Tusla

    Google Scholar 

  • Takeuchi Y, Lin SY, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet 107:1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR (2006) Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172:2501–2514

    Article  PubMed  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Wang CR, Chen S, Yu SB (2011a) Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet 122:905–913. doi:10.1007/s00122-010-1497-0

    Article  PubMed  Google Scholar 

  • Wang P, Zhou GL, Cui KH, Li ZK, Yu SB (2011b) Clustered QTL for source leaf size and yield traits in rice. Mol Breed. doi:10.1007/s11032-010-9529-7

  • Wei XJ, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Xie XB, Jin FX, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Xing YZ, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xue WY, Xing YZ, Weng XY, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: Substantially or Superficially? DNA Res 16:141–154

    Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang Q (2011) A Major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330. doi:10.1093/mp/ssq070

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q (2002) Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet 104:619–625

    Article  PubMed  CAS  Google Scholar 

  • Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106:326–331

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Key Program on Basic Research Project and National Special Program for Research of Transgenic Plant of China, and National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibin Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Supplementary material 2 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Xing, Y., Li, Z. et al. Improving rice yield and quality by QTL pyramiding. Mol Breeding 29, 903–913 (2012). https://doi.org/10.1007/s11032-011-9679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9679-2

Keywords

Navigation