Skip to main content
Log in

Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Diversity arrays technology (DArT) and simple sequence repeat (SSR) markers were applied to investigate population structure, extent of linkage disequilibrium and genetic diversity (kinship) on a genome-wide level in European barley (Hordeum vulgare L.) cultivars. A set of 183 varieties could be clearly distinguished into spring and winter types and was classified into five subgroups based on 253 DArT or 22 SSR markers. Despite the fact, that the same number of groups was revealed by both marker types, it could be shown that this grouping was more distinct for the SSRs than the DArTs, when assigned to a Q-matrix by STRUCTURE. This was supported by the findings from principal coordinate analysis, where the SSRs showed a better resolution according to seasonal habit and row number than the DArTs. A considerable influence on the rate of significant associations with malting and kernel quality parameters was revealed by different marker types in this genome-wide association study using general and mixed linear models considering population structure. Fewer spurious associations were observed when population structure was based on SSR rather than on DArT markers. We therefore conclude that it is advisable to use independent marker datasets for calculating population structure and for performing the association analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayoub M, Symons SJ, Edney MJ, Mather DE (2002) QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet 105:237–247

    Article  PubMed  CAS  Google Scholar 

  • Barr AR, Jeffries SP, Broughton S, Chalmers KJ, Kretschmer JM, Boyd WJR, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Moody DB, Read BJ, Poulsen D, Lance RCM, Platz GJ, Park RF, Panozzo JF, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003a) Mapping and QTL analysis of the barley population Alexis × Sloop. Aust J Agric Res 54:1117–1123

    Article  CAS  Google Scholar 

  • Barr AR, Karakousis A, Lance RCM, Logue SJ, Manning S, Chalmers KJ, Kretschmer JM, Boyd WJR, Collins HM, Roumeliotis S, Coventry SJ, Moody DB, Read BJ, Poulsen D, Li CD, Platz GJ, Inkerman PA, Panozzo JF, Cullis BR, Smith AB, Lim P, Langridge P (2003b) Mapping and QTL analysis of the barley population Chebec × Harrington. Aust J Agric Res 54:1125–1130

    Article  CAS  Google Scholar 

  • Beattie AD, Edney MJ, Scoles GJ, Rossnagel BG (2010) Association mapping of malting quality data from Western Canadian two-row barley cooperative trials. Crop Sci 50:1649–1663

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens RM, Ramdoss Y, Buckler ES (2007) TASSEL software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras J, Gouesnard B, Charcosset A, Manicacci D (2007) Evaluating the reliability of structure outputs case of relatedness between individuals. Crop Sci 47:887–890

    Article  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Comadran J, Thomas WTB, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  PubMed  CAS  Google Scholar 

  • Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R (2011) Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet. doi:10.1007/s00122-010-1466-7

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2(12):e1367

    Article  PubMed  Google Scholar 

  • Han F, Romagosa I, Ullrich SE, Jones BL, Hayes PM, Wesenberg DM (1997a) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 3:427–437

    Article  CAS  Google Scholar 

  • Han F, Ullrich SE, Kleinhofs A, Jones BL, Hayes PM, Wesenberg DM (1997b) Fine structure mapping of the barley chromosome-1 centromere region containing malting-quality QTLs. Theor Appl Genet 95:903–910

    Article  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Haseneyer G, Stracke S, Paul C, Einfeldt C, Broda A, Piepho HP, Graner A, Geiger HH (2009) Population structure and phenotypic variation of a spring barley world collection set up for association studies. Plant Breed 129(3):271–279

    Article  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ulrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  Google Scholar 

  • Herz MP (2000) Kartierung quantitativer vererbter Eigenschaften einschließlich Brauqualität und Resistenz gegen Krankheiten mit molekularen Markern in Gerste. PhD-Thesis. Technische Universität München (TUM), Lehrstuhl für Pflanzenzüchtung

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BW, Quinton M, Vanarendonk JAM (1992) Estimation of effects of single genes on quantitative traits. J Anim Sci 70:2000–2012

    PubMed  CAS  Google Scholar 

  • Kjaer B, Jensen J (1996) Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and a two-rowed barley. Euphytica 90:39–48

    Google Scholar 

  • Krumnacker K (2009) Untersuchung der funktionellen Assoziation von Kandidatengenen in Zusammenhang mit der Malzqualität der Gerste durch Transkriptomkartierung. PhD-Thesis. Technische Universität München (TUM), Lehrstuhl für Pflanzenzüchtung

  • Larson SR, Habernicht DK, Blake TK, Adamson M (1997) Backcross gains for six-rowed grain and malt qualities with introgression of a feed barley yield QTL. J Am Soc Brew Chem 55:52–57

    CAS  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110:356–363

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in worldwide cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6

    Article  PubMed  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullric E, Wesenberg DM (2000) QTL analysis of malting quality in barley based on doubled-haploid progeny of two elite North American varieties representing different germplasm pools. Theor Appl Genet 101:173–184

    Article  CAS  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2001) QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 103:625–637

    Article  CAS  Google Scholar 

  • Mather DE, Tinker NA, LaBerge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KG, Irvine RB, Falk DE, Kasha KJ (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37:544–554

    Article  CAS  Google Scholar 

  • Matthies IE, Weise S, Röder MS (2009a) Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley. Mol Breed 23:139–152

    Article  CAS  Google Scholar 

  • Matthies IE, Weise S, Förster J, Röder MS (2009b) Association mapping and marker development of the candidate genes (1→3),(1→4)-β-d-Glucan-4-glucanohydrolase and (1→4)-β-Xylan-endohydrolase 1 for malting quality in barley. Euphytica 170:109–122

    Article  CAS  Google Scholar 

  • Mezmouk S, Dubreuil P, Bosio M, Décousset L, Charcosset A, Praud S, Mangin B (2011) Effect of population structure corrections on the results of association mapping tests in complex maize diversity panels. Theor Appl Genet 122:1149–1160

    Article  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical models for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Oziel A, Hayes PM, Chen FQ, Jones B (1996) Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed 115:43–51

    Article  CAS  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008

    Article  PubMed  Google Scholar 

  • Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pswarayi A, van Eeuwijk FA, Ceccarelli S, Grando S, Comadran J, Russell JR, Pecchioni N, Tondelli A, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Thomas WTB, Romagosa I (2008) Changes in allele frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica 163:435–447

    Article  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  PubMed  CAS  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–186

    Article  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  PubMed  CAS  Google Scholar 

  • Russell JR, Ellis RP, Thomas WTB, Waugh R, Provan J, Booth A, Fuller J, Lawrence P, Young G, Powell W (2000) A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Mol Breed 6:553–568

    Article  Google Scholar 

  • Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398

    Article  PubMed  CAS  Google Scholar 

  • Schmalenbach I, Léon J, Pillen K (2009) Identifcation and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497

    Article  PubMed  CAS  Google Scholar 

  • Searle SR (1987) Linear models for unbalanced data. Wiley, New York

    Google Scholar 

  • Smith JSC, Kresovich S, Hopkins MS, Mitchell SE, Dean RE, Woodman WL, Lee M, Porter K (2000) Genetic diversity among elite Sorghum inbred lines assessed with simple sequence repeats. Crop Sci 40:226–232

    Article  CAS  Google Scholar 

  • Sneath PHA (1957) Some thoughts on bacterial classification. J Gen Microbiol 17:184–200

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Haseneyer G, Veyrieras JB, Geiger HH, Sauer S, Graner A, Piepho HP (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118(2):259–273

    Article  PubMed  CAS  Google Scholar 

  • Szücs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134–140

    Article  Google Scholar 

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, Falk DE, Ferguson T, Shugar LP, Legge WG, Irvine RB, Choo TM, Briggs KG, Ullrich SE, Franckowiak JD, Blake TK, Graf RJ, Dofing SM, Saghai Maroof MA, Scoles GJ, Hoffman D, Dahleen LS, Kilian A, Chen F, Biyashev RM, Kudrna DA, Steffenson BJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  • Ullrich SE, Han F (1997) Genetic complexity of the malt extract trait in barley suggested by QTL analysis. J Am Soc Brew Chem 55(1):1–4

    CAS  Google Scholar 

  • van Hintum TJL (2007) Data resolution: a jackknife procedure for determining the consistency of molecular marker datasets. Theor Appl Genet 115:343–349

    Article  PubMed  Google Scholar 

  • van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, Jannink JL, Muehlbauer GL, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:1–5

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer, Massachusetts

    Google Scholar 

  • Weise S, Scholz U, Röder MS, Matthies IE (2009) A comprehensive database of malting quality traits in brewing barley. Barley Genet Newsl 39:1–4

    Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed  Google Scholar 

  • Wenzl P, Raman H, Wang J, Zhou M, Huttner E, Kilian A (2007) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8:196

    Article  PubMed  Google Scholar 

  • Worch S, Kalladan R, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Zhang Z, Zhu C, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2(1):63–77

    Article  CAS  Google Scholar 

  • Zhang LY, Marchand S, Tinker NA, Belzile F (2009) Population structure and linkage disequilibrium in barley assessed by DArT markers. Theor Appl Genet 119(1):43–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the excellent technical assistance of Angelika Flieger in performing the SSR studies and Triticarte Pty. Ltd (Canberra, Australia) for the DArT analyses. This work was granted by the BMBF within the GABI program (GENOBAR, Project-No. 0315066C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge E. Matthies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material Table 1

Number of mapped DArT and SSR markers used for the analysis of population structure, linkage disequilibrium (LD), kinship and association studies in a set of 183 barley cultivars and their average PIC values. The number of DArT-markers which were used in association mapping studies after removal of 5% minor allele frequency (MAF) is also shown. (DOC 40 kb)

Electronic Supplementary Material Table 2

Population structure and assignment (>50% probability) of each cultivar to the five groups (Q1 to Q5) revealed by STRUCTURE analysis with both marker types (sheet a). Population structure and assignment (in % probability) of every cultivar to one of the five groups (Q1 to Q5) revealed by STRUCTURE analysis with the 22 SSRs (sheet b). Population structure and assignment (in % probability) of every cultivar to one of the five groups (Q1 to Q5) revealed by STRUCTURE analysis with the 253 DArTs (sheet c). Origin of cultivars and breeders (sheet d). (XLS 120 kb)

Electronic Supplementary Material Table 3

GWAS with the kernel quality parameter glume fineness (sheet a), GWAS with the kernel quality parameter TGW (sheet b), GWAS with the malting quality parameter extract (sheet c), GWAS with the malting quality parameter friability (sheet d) considering the GLM. (XLSX 218 kb)

Electronic Supplementary Material Table 4

Results of GWAS considering the MLM with four different combinations of marker types used for the estimation the Q-matrix and kinship (MLM_1 = Q5-DArT + K-DArT, MLM_2 = Q5-SSR + K-DArT, MLM_3 = Q5-DArT + K-SSR, MLM_4 = Q5-SSR + K-SSR). Two kernel quality parameters, such as glume fineness (sheet a), and TGW (sheet b), and two malting quality parameters like extract (sheet c), and friability (sheet d) were assessed. (XLSX 593 kb)

Electronic Supplementary Material Fig. 1

Fig. 1 Estimated probability of number of subgroups k (goodness of fit computed as lnPr (X|K) for the investigated set of 183 cultivars studied with two marker types (a) 22 SSRs, and (b) 253 DArTs. The ln likelihood L(K) mean values determined by STRUCTURE are plotted against the assumed number of subgroups (k1 to k20). (PPT 153 kb)

Electronic Supplementary Material Fig. 2

Scatterplot showing the distribution of the intrachromosomal LD-decay parameter r2 in 183 European barley cultivars and plotted against the genetic distance in cM. The horizontal line indicates the 95% percentile of the distribution of unlinked r2, which gives the critical value of r2. Second degree LOESS curve fitted to the plot (black bottom line). (PPT 147 kb)

Electronic Supplementary Material Fig. 3

Proportion of marker pairwise r2 intrachromosomal measurements above and below background linkage disequilibrium with a critical r2 of 0.21 plotted as a logarithmic function of the genetic distance (in classes) of the entire set of 183 European barley cultivars investigated with 862 mapped DArT markers considering 5 % MAF. (PDF 10 kb)

Electronic Supplementary Material Fig. 4

Cumulative distribution of the observed p values assessed for different variantsof the MLM_QK with respect to the marker type used for assessing population structure and kinshipinformation (a) MLM_1 = Q5-DArT + K-DArT, (b) MLM_2 = Q5-SSR + K-DArT, (c) MLM_3 = Q5-DArT + K-SSR, (d) MLM_4 = Q5-SSR + K-SSR). Following traits were considered: Glume fineness,thousand grain weight (TGW), extract, and friability. (PPTX 190 kb)

Electronic Supplementary Material Fig. 5

Genomewide association studies of 183 barley cultivars considering the MLM_QK for four traits (a) extract, and (b) thousand grain weight. Population structure (Q) and kinship (K) was taking into account by using the Q5 matrix calculated either with SSR- or DArT markers. This information was used in different combinations on the MLM in order to assess the effect of the marker type on the rate of signifianct association results (MLM_1 = Q5-DArT + K-DArT, MLM_2 = Q5-SSR + K-DArT, MLM_3 = Q5-DArT + K-SSR, MLM_4 = Q5-SSR + K-SSR). The calculated p-values were converted into –log10(p). The significance thresholds p < 0.05, and p < 0.001 are indicated by dashed lines. (PPTX 320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthies, I.E., van Hintum, T., Weise, S. et al. Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. Mol Breeding 30, 951–966 (2012). https://doi.org/10.1007/s11032-011-9678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9678-3

Keywords

Navigation