Skip to main content
Log in

Use of a transgenic early flowering approach in apple (Malus × domestica Borkh.) to introgress fire blight resistance from cultivar Evereste

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The long juvenile phase of Malus spp. has always been a major drawback for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apples into domestic apple cultivars (M. × domestica Borkh.). Several agro-technical approaches have been investigated but none was able to reduce the juvenile phase to less than 18 months. Recently, an early flowering transgenic line named T1190 was obtained by over-expressing the BpMADS4 gene from silver birch (Betula pendula Roth.) in the apple cultivar Pinova. In this study, we report on the acceleration of the first two introgression cycles (F1 and BC′1) of the highly efficacious fire blight resistance locus Fb_E from the ornamental apple cultivar Evereste, using the BpMADS4-transgenic line T1190. A background selection based on simple sequence repeats (SSR) markers regularly distributed over the apple genome was applied to the 24 BC′1 seedlings carrying the BpMADS4 transgene and the Fb_E locus. Two early flowering BC′1 seedlings estimated to carry less than 15% of the genome of Evereste were identified. They are currently (July 2011) being used in reciprocal crosses with the apple cultivar Royal Gala to continue the introgression of the Fb_E locus. Additionally, the strong phenotypic effect of the Fb_E locus from Evereste was confirmed by artificially inoculating a T1190 × Evereste F1 progeny with the causal agent of fire blight, Erwinia amylovora. Possible ways of enhancing the fast introgression of disease resistance genes in domestic apple using the transgenic line T1190 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldwinckle HS (1976) Early flowering of cultivated apple seedlings forced in the greenhouse. Acta Hortic 56:201–203

    Google Scholar 

  • Aldwinckle HS, van der Zwet T (1979) Recent progress in breeding for fireblight resistance in apples and pears in North America. EPPO Bull 9:27–34

    Article  Google Scholar 

  • Aldwinckle HS, Gustafson HL, Forsline PL (1999) Evaluation of the core subset of the USDA apple germplasm collection for resistance to fire blight. Acta Hortic 489:269–272

    Google Scholar 

  • Baumgartner IO, Franck L, Broggini GAL, Patocchi A, Kellerhals M (2011) Fire blight resistance from ‘Evereste’ and Malus sieversii used in breeding for new high quality apple cultivars: strategies and results. Acta Hortic 896:391–398

    Google Scholar 

  • Beckerman J, Chatfield J, Draper E (2009) A 33-year evaluation of resistance and pathogenicity in the apple scab-crabapples pathosystem. Hort Sci 44:599–608

    Google Scholar 

  • Bell AC, Ranney TG, Eaker TA, Sutton TB (2000) Evaluating fire blight resistance among flowering crabapples (Malus spp.) and pears (Pyrus spp.). 11th Metropolitan Tree Improvement Alliance (METRIA) Conference. Landscape Plant Development Center, Gresham

    Google Scholar 

  • Broggini GAL, Galli P, Parravicini G, Gianfranceschi L, Gessler C, Patocchi A (2009) HcrVf paralogs are present on linkage groups 1 and 6 of Malus. Genome 52:129–138

    Article  PubMed  CAS  Google Scholar 

  • Bus V (2006) Differential Host-Pathogen Interactions of Venturia inaequalis and Malus. PhD thesis. University of Auckland, Auckland, New Zealand

  • Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740–7A map to the same linkage group of apple. Mol Breed 15:103–116

    Article  CAS  Google Scholar 

  • Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton J-M, Durel C-E, Malone MT, Patocchi A, Ranantunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:233–236

    Article  Google Scholar 

  • Bus V, Bassett H, Bowatte D, Chagné D, Ranatunga C, Ulluwishewa D, Wiedow C, Gardiner S (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genomes 6:477–487

    Article  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel C-E, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  PubMed  CAS  Google Scholar 

  • Caffier V, Laurens F (2005) Breakdown of Pl2, a major gene of resistance to apple powdery mildew, in a French experimental orchard. Plant Pathol 54:116–124

    Article  CAS  Google Scholar 

  • Caffier V, Parisi L (2007) Development of apple powdery mildew on sources of resistance to Podosphaera leucotricha, exposed to an inoculum virulent against the major resistance gene Pl-2. Plant Breed 126:319–322

    Article  CAS  Google Scholar 

  • Celton J-M, Chagne D, Tustin S, Terakami S, Nishitani C, Yamamoto T, Gardiner S (2009a) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2:182

    Article  PubMed  Google Scholar 

  • Celton JM, Tustin D, Chagné D, Gardiner S (2009b) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Article  Google Scholar 

  • Chevreau E (2009) La transgenèse pour l’innovation variétale fruitière: état des lieux et perspectives. Innov Agron 7:153–163

    Google Scholar 

  • Costa F, Van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586

    Article  Google Scholar 

  • Cova V, Perini D, Soglio V, Komjanc M, van de Weg E, Gessler C, Gianfranceschi L (2011) Exploiting expressed sequence tag databases for mapping markers associated with fruit development and fruit quality in apple. Mol Breed. doi:10.1007/s11032-011-9584-8

  • Crandall CS (1926) Apple breeding at the University of Illinois. Illinois Agric Exp Stn Bull 275

  • Dreesen RSG, Vanholme BTM, Luyten K, Van Wynsberghe L, Fazio G, Roldan-Ruiz I, Keulemans J (2010) Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Mol Breed 26:693–709

    Article  CAS  Google Scholar 

  • Dugé de Bernonville T (2009) Caractérisations histologique, moléculaire et biochimique des interactions compatible et incompatible entre Erwinia amylovora, agent du feu bactérien, et le pommier (Malus × domestica). PhD thesis. Université d’Angers, Angers, France

  • Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521

    Article  CAS  Google Scholar 

  • Durel C-E, Laurens F, Caffier V, Le Cam B, Sapoukhina N (2007) Les apports de l’innovation variétale: recherches menées pour améliorer la résistance du pommier à la tavelure. Innov Agron 1:47–61

    Google Scholar 

  • Durel C-E, Denancé C, Brisset M-N (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes Evereste and Malus floribunda clone 821. Genome 52:139–147

    Article  PubMed  CAS  Google Scholar 

  • Fahrentrapp J, Broggini GAL, Peil A, Kellerhals M, Malnoy M, Richter K, Gessler C (2011) Fine mapping of fire blight resistance locus in Malus × robusta 5 on linkage group 3. Acta Hortic 896:243–244

    Google Scholar 

  • Fazio G, Aldwinckle HS, Volk GM, Richards CM, Janisiewicz WJ, Forsline PL (2009) Progress in evaluating Malus sieversii for disease resistance and horticultural traits. Acta Hortic 814:59–66

    Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:27–32

    Article  Google Scholar 

  • Fischer C (1994) Shortening of the juvenile period in apple breeding. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer Academic Publishers, Dordrecht, pp 161–164

    Chapter  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke MV (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    Article  CAS  Google Scholar 

  • Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    Article  CAS  Google Scholar 

  • Flachowsky H, Le Roux P-M, Peil A, Patocchi A, Richter K, Hanke M-V (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol. doi:10.1111/j.1469-8137.2011.03813.x

  • Forsline PL, Aldwinckle HS (2004) Evaluation of Malus sieversii seedling populations for disease resistance and horticultural traits. Acta Hortic 663:529–534

    Google Scholar 

  • Forsline PL, Aldwinckle HS, Luby JJ (2008) Fire blight incidence on Malus sieversii grown in New York and Minnesota. Acta Hortic 793:345–350

    Google Scholar 

  • Galli P, Patocchi A, Broggini GAL, Gessler C (2010) The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes. Mol Plant Microbe Interact 23:608–617

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 1–62

    Google Scholar 

  • Gardner RG (1976) Breeding apple rootstocks resistant to fire blight. PhD thesis. Cornell University, Geneva, USA

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot. doi:10.1093/jxb/err215

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20

    Google Scholar 

  • Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2007) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001–1011

    Article  Google Scholar 

  • Jacobsen E, Schouten HJ (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotech 25:219–223

    Article  CAS  Google Scholar 

  • Janick J (2006) The PRI apple breeding program. Hort Sci 41:8–10

    Google Scholar 

  • Kása K, Hevesi M, Tóth M (2004) Evaluation of traditional Hungarian apple cultivars as sources of resistance to fire blight. Acta Hortic 663:225–228

    Google Scholar 

  • Kellerhals M, Spuhler M, Duffy B, Patocchi A, Frey JE (2009) Selection efficiency in apple breeding. Acta Hortic 814:177–184

    Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Khan M, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306

    Article  Google Scholar 

  • Khan MA, Durel C-E, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Volz R, Alspach P, Bus V (2010) Development of a recurrent apple breeding programme in New Zealand: a synthesis of results, and a proposed revised breeding strategy. Euphytica 173:207–222

    Article  Google Scholar 

  • Laurens F, Durel CE, Patocchi A, Peil A, Salvi S, Tartarini S, Velasco R, van de Weg E (2011) Review on apple genetics and breeding programmes and presentation of a new European initiative to increase fruit breeding efficiency. J Fruit Sci 27:102–107

    Google Scholar 

  • Le Lézec M, Lecomte P, Laurens F, Michelesi J-C (1997) Sensibilité variétale au feu bactérien (1re partie). L’ Arbor Fruitière 503:57–62

    Google Scholar 

  • Lespinasse Y, Aldwinckle HS (2000) Breeding for resistance to fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp 253–265

    Chapter  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    PubMed  CAS  Google Scholar 

  • Meilan R (1997) Floral induction in woody angiosperms. New For 14:179–202

    Article  Google Scholar 

  • Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    Article  CAS  Google Scholar 

  • Norelli JL, Aldwinckle HS (1986) Differential susceptibility of Malus spp. cultivars Robusta 5, Novole, and Ottawa 523 to Erwinia amylovora. Plant Dis 70:1017–1019

    Article  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parisi L, Fouillet V, Schouten H, Groenwold R, Laurens F, Didelot F, Evans K, Fischer C, Gennari F, Kemp H, Lateur M, Patocchi A, Thissen J, Tsipouridis C (2004) Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Hortic 663:107–114

    Google Scholar 

  • Park TH, Vleeshouwers V, Jacobsen E, Vossen E, Visser RGF (2009) Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breed 128:109–117

    Article  CAS  Google Scholar 

  • Parravicini Rusca G (2010) Candidate genes for fire blight resistance in apple cultivar ‘Evereste’. PhD thesis. ETHZ, Zürich, Switzerland

  • Parravicini G, Gessler C, Denancé C, Lasserre-Zuber P, Vergne E, Brisset M-N, Patocchi A, Durel C-E, Broggini GAL (2011) Identification of serine/threonine kinase and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’. Mol Plant Pathol 12:493–505

    Article  PubMed  CAS  Google Scholar 

  • Patocchi A, Fernández-Fernández F, Evans K, Gobbin D, Rezzonico F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Mathis-Jeanneteau F, Durel C, Gianfranceschi L, Costa F, Toller C, Cova V, Mott D, Komjanc M, Barbaro E, Kodde L, Rikkerink E, Gessler C, van de Weg W (2009a) Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome. Tree Genet Genomes 5:211–223

    Article  Google Scholar 

  • Patocchi A, Frei A, Frey J, Kellerhals M (2009b) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24:337–347

    Article  CAS  Google Scholar 

  • Peace C, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, New York, pp 19–53

    Chapter  Google Scholar 

  • Peil A, Bus VGM, Geider K, Richter K, Flachowsky H, Hanke MV (2009) Improvement of fire blight resistance in apple and pear. Int J Plant Breed 3:1–27

    Article  Google Scholar 

  • Pontais I, Paulin JP, Brisset MN, Treutter D (2008) Are phenolic compounds involved in the differential responses of apple genotypes to Erwinia amylovora? Acta Hortic 793:247–248

    CAS  Google Scholar 

  • Richter K, Fischer C (2002) Stability of fire blight resistance in apple. Acta Hortic 590:381–384

    Google Scholar 

  • Rowan DD, Hunt MB, Dimouro A, Alspach PA, Weskett R, Volz RK, Gardiner SE, Chagné D (2009) Profiling fruit volatiles in the progeny of a ‘Royal Gala’ × ‘Granny Smith’ apple (Malus × domestica) cross. J Agric Food Chem 57:7953–7961

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Soejima J, Bessho H, Tsuchiya S, Komori S, Abe K, Kotoda N (1998) Breeding of Fuji apples and performance on JM rootstocks. Compact Fruit Tree 31:22–24

    Google Scholar 

  • Szalatnay D, Eder-Bauermeister R, Duffy B, Kellerhals M (2009) Characterization of fruit genetic resources in Switzerland. Acta Hortic 814:143–148

    Google Scholar 

  • Tan MYT, Hutten RCB, Visser RGF, van Eck HJ (2010) The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato. Theor Appl Genet 121:117–125

    Article  PubMed  Google Scholar 

  • Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T (2009) Genetic linkage map of the Japanese pear Housui identifying three homozygous genomic regions. J Jpn Soc Hort Sci 78:417–424

    Article  CAS  Google Scholar 

  • van der Zwet T, Keil HL (1979) Fire blight: a bacterial disease of rosaceous plants. United States Department of Agriculture, Washington, USA

    Google Scholar 

  • van Dyk M, Soeker M, Labuschagne I, Rees D (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Gen 42:833–839

    Article  CAS  Google Scholar 

  • Venisse J-S, Malnoy M, Faize M, Paulin J-P, Brisset M-N (2002) Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Mol Plant Microbe Interact 15:1204–1212

    Article  PubMed  CAS  Google Scholar 

  • Visser T (1964) Juvenile phase and growth of apple and pear seedlings. Euphytica 13:119–129

    Google Scholar 

  • Volz RK, Rikkerink E, Austin P, Lawrence T, Bus VGM (2009) “Fast-breeding” in apple: a strategy to accelerate introgression of new traits into elite germplasm. Acta Hortic 814:163–168

    Google Scholar 

  • Wang A, Aldwinckle H, Forsline P, Main D, Fazio G, Brown S, Xu K (2011) EST contig-based SSR linkage maps for Malus × domestica cv Royal Gala and an apple scab resistant accession of M. sieversii, the progenitor species of domestic apple. Mol Breed. doi:10.1007/s11032-011-9554-1

  • Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MN, Yoshida Y (1990) Apples (Malus). Acta Hortic 290:3–46

    Google Scholar 

  • Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T (2004) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci 54:239–244

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    Article  CAS  Google Scholar 

  • Zhu Y, Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus × domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4:555–562

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the ZUEFOS Project (Züchtung feuerbrandtoleranter Obstsorten) of the Federal Office for Agriculture (FOAG, Switzerland). The authors gratefully acknowledge Dr. Giovanni Broggini, Dr. Gabriella Parravicini Rusca (Swiss Federal Institute of Technology Zürich, Switzerland), and Dr. Charles-Eric Durel (Institut National de la Recherche Agronomique, INRA Angers, France) for kindly providing the primer sequences of SSR marker ChFbE06 before publication. The authors are also grateful to Rolf Blapp, Juergen Krauss, Reto Leumann, Isabelle Baumgartner (Agroscope Changins-Wädenswil ACW, Wädenswil, Switzerland), Maja Frei, Sabine Klarer, Andre Imboden and Urs Moser (Swiss Federal Institute of Technology Zürich, Switzerland) for the preparation of grafted material and help in plant maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Patocchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Roux, PM., Flachowsky, H., Hanke, MV. et al. Use of a transgenic early flowering approach in apple (Malus × domestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Mol Breeding 30, 857–874 (2012). https://doi.org/10.1007/s11032-011-9669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9669-4

Keywords

Navigation