Skip to main content
Log in

QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Improving fruit quality of apple varieties is an important but complex breeding goal. Flavour is among the key factors of apple fruit quality but in spite of the analytical and biochemical knowledge about volatiles little is known about the genetic and molecular bases of apple aroma. The aim of this study was to use a saturated molecular linkage map of apple to identify QTLs for aroma compounds such as alcohols, esters and terpenes, but also for a number of unidentified volatile compounds (non-targeted analysis approach). Two parental genetic maps were constructed for the apple cultivars ‘Discovery’ and ‘Prima’ by using mainly AFLP and SSR markers. ‘Discovery’ and ‘Prima’ showed very different volatile patterns, and ‘Discovery’ mostly had the higher volatile concentrations in comparison with the Vf-scab resistant ‘Prima’ which has its origin in the small-fruited apple species Malus floribunda. About 50 putative QTLs for a total of 27 different apple fruit volatiles were detected through interval mapping by using genotypic data of 150 F1 individuals of the mapping population ‘C3’ together with phenotypic data obtained by head-space solid phase microextraction gas chromatography. QTLs for volatile compounds putatively involved in apple aroma were found on 12 out of the 17 apple chromosomes, but they were not evenly dispersed. QTLs were mainly clustered on linkage groups LG 2, 3 and 9. In a first attempt, a LOX (lipoxygenase) candidate gene, putatively involved in volatile metabolism, was mapped on LG 9, genetically associated with a cluster of QTLs for ester-type volatiles. Implications for aroma breeding in apple are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Harrie A, Verhoeven HA, Blaas J, van Houwelingen AMML, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–661

    Article  PubMed  CAS  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Peil A, Fischer C, Dunemann F (2006) Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740–7A apple and its utility for molecular breeding. Tree Genet Genomes 2:186–195. doi:10.1007/s11295-006-0043-3

    Article  Google Scholar 

  • Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339. doi:10.1007/s11032-006-9004-7

    Article  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379. doi:10.1094/PHYTO.2004.94.4.370

    Article  PubMed  CAS  Google Scholar 

  • Carrasco B, Hancock JF, Beaudry RM, Retamales JB (2005) Chemical composition and inheritance patterns od aroma in Fragaria × ananassa and Fragaria virginiana progenies. HortScience 40:1649–1650

    Google Scholar 

  • Causse M, Saliba-Colombani V, Lesschaeve I, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato II. Mapping QTLs for sensory attributes. Theor Appl Genet 102:273–283. doi:10.1007/s001220051644

    Article  CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035. doi:10.1007/s001220050835

    Article  CAS  Google Scholar 

  • Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351. doi:10.1104/pp.106.083279

    Article  PubMed  CAS  Google Scholar 

  • Dixon J, Hewett EW (2000) Factors affecting apple aroma/flavour volatile concentration: a review. N Z J Crop Hortic Sci 28:155–173

    CAS  Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125. doi:10.1007/s11032-006-9016-3

    Article  CAS  Google Scholar 

  • Fellman JK, Miller TW, Mattinson DS, Mattheis JP (2000) Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience 35:1026–1033

    CAS  Google Scholar 

  • Forney CF, Kalt W, Jordan MA (2000) The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience 35:1022–1026

    CAS  Google Scholar 

  • Fuhrmann E, Grosch W (2002) Character impact odorants of the apple cultivars Elstar and Cox Orange. Nahrung/Food 46:187–193

    Article  CAS  Google Scholar 

  • Han Y, Gasic K, Korban SS (2007) Multiple-copy cluster-type organization and evolution of genes encoding O-methyltransferases in the apple. Genetics 176:2625–2635. doi:10.1534/genetics.107.073650

    Article  PubMed  CAS  Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree achitecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208. doi:10.1007/s11032-006-9022-5

    Article  CAS  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306. doi:10.1007/s11032-006-9000-y

    Article  Google Scholar 

  • King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1225–1237. doi:10.1007/s001220000530

    Article  Google Scholar 

  • Lespinasse Y, Durel CE, Parisi L, Laurens F, Chevalier M, Pinet C (2000) A European project: D.A.R.E.—Durable Apple Resistance in Europe. Acta Hortic 538:197–200

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, van de Weg WE, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241. doi:10.1023/A:1020525906332

    Article  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526. doi:10.1023/A:1024886500979

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    PubMed  CAS  Google Scholar 

  • Maarse H (ed) (1991) Volatile compounds in food and beverages. Marcel Dekker, New York, p 30

    Google Scholar 

  • Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-Van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73. doi:10.1007/s001220050867

    Article  CAS  Google Scholar 

  • Myburg AA, Remington DM, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques 30:348–357

    PubMed  CAS  Google Scholar 

  • N’Diaye A, Van de Weg WE, Kodde LP, Koller B, Dunemann F, Thiermann M, Tartarini S, Gennari F, Durel CE (2008) Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genet Genomes 4:727–743. doi:10.1007/s11295-008-0146-0

    Article  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166. doi:10.1104/pp.105.076208

    Article  PubMed  Google Scholar 

  • Olbricht K, Grafe C, Weiss K, Ulrich D (2008) Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breed 127:87–93

    Google Scholar 

  • Paillard NMM (1990) The flavour of apples, pears and quinces. In: Morton ID, Macleod AJ (eds) The flavour of fruits. Elsevier, Amsterdam, pp 1–41

    Google Scholar 

  • Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824. doi:10.1104/pp.106.080994

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272. doi:10.1007/s001220051643

    Article  CAS  Google Scholar 

  • Schaffer RJ, Ellen N, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912. doi:10.1104/pp.106.093765

    Article  PubMed  CAS  Google Scholar 

  • Schulz I, Ulrich D, Fischer C (2003) Rapid differentiation of new apple cultivars by headspace solid-phase microextraction in combination with chemometrical data processing. Nahrung/Food 47:136–139

    Article  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, van de Weg WE, van Kaauwen MPW, Walzer M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224. doi:10.1007/s11295-006-0045-1

    Article  Google Scholar 

  • Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132–3144. doi:10.1111/j.1742-4658.2005.04732.x

    Article  PubMed  CAS  Google Scholar 

  • Thiermann M (2002) Molekulare Charakterisierung dauerhafter, polygen vererbter Resistenzquellen für Apfelschorf und Apfelmehltau. Thesis, University of Bremen, Germany

  • Tiemann DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896. doi:10.1093/jxb/erj074

    Article  Google Scholar 

  • Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624. doi:10.1038/sj.hdy.6886230

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

  • Willaert GA, Dirinck PJ, De Pooter HL, Schamp NN (1983) Objective measurement of aroma quality of Golden Delicious apples as a function of controlled-atmosphere storage time. J Agric Food Chem 31:809–813. doi:10.1021/jf00118a033

    Article  CAS  Google Scholar 

  • Williams AA, Knee M (1977) The flavour of Cox’s Orange Pippin apples and its variation with storage. Ann Appl Biol 87:127–131. doi:10.1111/j.1744-7348.1977.tb00670.x

    Article  Google Scholar 

  • Young H, Gilbert JM, Murray SH, Ball RD (1996) Causal effects of aroma compounds on Royal Gala apple flavours. J Sci Food Agric 71:329–336. doi:10.1002/(SICI)1097-0010(199607)71:3<329::AID-JSFA588>3.0.CO;2-8

    Article  CAS  Google Scholar 

  • Zini E, Biasioli F, Gasperi F, Mott D, Aprea E, Märk TD, Patocchi A, Gessler C (2005) QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 145:269–279. doi:10.1007/s10681-005-1645-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Astrid Sahre, Regina Gläss, Jürgen Egerer, Margitta Dießner and Kirsten Weiß for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dunemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunemann, F., Ulrich, D., Boudichevskaia, A. et al. QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breeding 23, 501–521 (2009). https://doi.org/10.1007/s11032-008-9252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9252-9

Keywords

Navigation