Skip to main content
Log in

Linkage maps of the apple (Malus × domestica Borkh.) cvs ‘Ralls Janet’ and ‘Delicious’ include newly developed EST markers

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Two apple genetic linkage maps were constructed using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), random amplified polymorphic DNAs (RAPDs), and expressed sequence tag (EST)-derived markers in combination with a pseudo-testcross mapping strategy in which the cultivars ‘Ralls Janet’ and ‘Delicious’ were used as the respective seed parents. Mitsubakaido (Malus sieboldii) was used as the pollen parent for each of the segregating F1 populations. Expressed sequence tag data were obtained from the random sequencing of cDNA libraries constructed from in vitro cultured shoots and maturing fruits of cv ‘Fuji’, which is the offspring of a cross between ‘Ralls Janet’ and ‘Delicious’. In addition, a number of published gene sequences were used to develop markers for mapping. The ‘Ralls Janet’ map consisted of 346 markers (178 AFLPs, 95 RAPDs, 54 SSRs, 18 ESTs, and the S locus) in 17 linkage groups, with a total length of 1082 cM, while that of ‘Delicious’ comprised 300 markers (120 AFLPs, 81 RAPDs, 64 SSRs, 32 ESTs, and the S, Rf, and MdACS-1 loci) on 17 linkage groups spanning 1031 cM. These maps are amenable to comparisons with previously published maps of ‘Fiesta’ and ‘Discovery’ (Liebhard et al., Mol Breed 10:217–241, 2002; Liebhard et al., Theor Appl Genet 106:1497–1508, 2003a) because several of the SSRs (one to three markers per linkage group) were used in all of the maps. Distorted marker segregation was observed in three and two regions of the ‘Ralls Janet’ and ‘Delicious’ maps, respectively. These regions were localized in different parts of the genome from those in previously reported apple linkage maps. This marker distortion may be dependent on the combinations of cultivars used for map construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239

    Article  PubMed  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  PubMed  CAS  Google Scholar 

  • Bousquet J, Simon L, Lalonde M (1990) DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can J For Res 20:254–257

    Article  CAS  Google Scholar 

  • Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Genet 106:703–714

    PubMed  CAS  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert F (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel C-E (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668

    Article  PubMed  CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222–227

    Article  CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hortic Sci 122:350–359

    CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1998) Molecular marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035

    Article  CAS  Google Scholar 

  • Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005a) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh.). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Costa F, Stella S, Sansavini S, Van de Weg WE (2005b) Functional markers as genetic approach to study ethylene production and fruit softening in apple (Malus × domestica Borkh.). In: Mencarelli F, Tonutti P (eds) Proc 5th Int Postharvest Symp. Acta Hortic 682(ISHS):389–394

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, Van de Weg WE (2006) The Vf gene for scab resistance in apple is linked to sub-lethal genes. Euphytica 151:123–132

    Article  CAS  Google Scholar 

  • Gao ZS, Van de Weg WE, Schaart JG, Shouten HJ, Tran DH, Kodde LP, van der Meer IM, van der Geest AHM, Kodde J, Breiteneder H, Hoffmann-Sommergruber K, Bosch D, Gilissen LJWJ (2005a) Genomic cloning and linkage mapping of the Mal d 1 (PR-10) gene family in apple (Malus domestica). Theor Appl Genet 111:171–183

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, Van de Weg WE, Schaart JG, van Arkel G, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJWJ (2005b) Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like protein) and Mal d 4 (profilin). Theor Appl Genet 111:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Gao ZS, Van de Weg WE, Schaart JG, van der Meer IM, Kodde L, Laimer M, Breiteneder H, Hoffmann-Sommergruber K, Gilissen LJWJ (2005c) Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica). Theor Appl Genet 110:479–491

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Fruits and nuts, genome mapping and molecular breeding in plants, vol 4. Springer, Berlin Heidelberg New York, pp 1–62

    Google Scholar 

  • Gebhardt C, Bellin D, Henselewski H, Lehmann W, Schwarzfischer J, Valkonen JP (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112:1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD Markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Guo WZ, Zhang TZ, Ding YZ, Zhu YC, Shen XL, Zhu XF (2005) Molecular marker assisted selection and pyramiding of two QTLs for fiber strength in upland cotton. Yi Chuan Xue Bao 32:1275–1285

    PubMed  CAS  Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    Article  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    PubMed  CAS  Google Scholar 

  • Horn R, Lecouls A-C, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim HR, Jesudurai C, Sosinski B, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    Article  PubMed  Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    Article  CAS  Google Scholar 

  • Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed 15:205–219

    Article  CAS  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084

    Article  Google Scholar 

  • King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1227–1235

    Article  CAS  Google Scholar 

  • Klein LG, Way RD, Lamb RC (1961) The inheritance of a lethal factor in apples. Proc Am Soc Hortic Sci 77:50–53

    Google Scholar 

  • Koller B, Gianfranceschi L, Seglias N, McDermott J, Gessler C (1994) DNA markers linked to Malus floribunda 821 scab resistance. Plant Mol Biol 26:597–602

    Article  PubMed  CAS  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003a) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    PubMed  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003b) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Genet 112:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ × ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system. Genome 44:284–292

    Article  PubMed  CAS  Google Scholar 

  • Matsumura H, Watanabe S, Harada K, Senda M, Akada S, Kawasaki S, Dubouzet EG, Minaka N, Takahashi R (2005) Molecular linkage mapping and phylogeny of the chalcone synthase multigene family in soybean. Theor Appl Genet 110:1203–1209

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Goto K, Shimizu M, Kobayashi H (1997) Chromosomal mapping of genes in the RBCS family in Arabidopsis thaliana. DNA Res 4:341–343

    Article  PubMed  CAS  Google Scholar 

  • Omura M, Ueda T, Kita M, Komatsu A, Takanokura Y, Shimada T, Endo-Inagaki T, Nesumi H, Yoshida T (2000) EST mapping of Citrus. In: Proc Intl Soc Citricult IX Congr. Orlando, FL, pp 71–74

  • Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A (2004) Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor Appl Genet 108:1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017

    Article  CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple resistance gene Vf. Mol Gen Genet 262:884–891

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Wood T, Zhang Z, Miller W (1997) Comparison of DNA sequences with protein sequences. Genomics 46:24–36

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Takeda K (1984) Genetic analysis of resistance to Alternaria Blotch (Alternaria mali Roberts) in apple. (Studies on the breeding of the apple. VIII). Japan J Breed 34:197–209

    Google Scholar 

  • Sato T, Kudo T, Akada T, Wakasa Y, Niizeki M, Harada T (2004) Allelotype of a ripening-specific 1-aminocyclopropane-1-carboxylate synthase gene defines the rate of fruit drop in apple. J Am Soc Hortic Sci 129:32–36

    CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Staden R, Beal KF, Bonfield JK (2000) The Staden Package. 1998. Methods Mol Biol 132:115–130

    PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to introgress rice QTLs controlling root traits and aroma into an Indian upland rice variety. Theor Appl Genet 112:208–221

    Article  PubMed  CAS  Google Scholar 

  • Sunako T, Sakuraba W, Senda M, Akada S, Ishikawa R, Niizeki M, Harada T (1999) An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiol 119:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Sung SK, Yu GH, Nam J, Jeong DH, An G (2000) Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta 210:519–528

    Article  PubMed  CAS  Google Scholar 

  • Tartarini S, Gennari F, Pratesi D, Palazzetti C, Sansavini S, Parisi L, Fouillet A, Fouillet V, Durel CE (2004) Characterisation and genetic mapping of a major scab resistance gene from the old Italian apple cultivar ‘Durello di Forlì’. Acta Hortic 663:129–134

    CAS  Google Scholar 

  • Van Ooijen JW, Voortips RE (2001) JoinMap version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Verdoodt L, Van Haute A, Goderis IJ, De Witte K, Keulemans J, Broothaerts W (1998) Use of the multi-allelic self-incompatibility gene in apple to assess homozygocity in shoots obtained through haploid induction. Theor Appl Genet 96:294–300

    Article  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW (1987) Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA 84:2097–2100

    Article  PubMed  CAS  Google Scholar 

  • Way RD, Lamb RC, Pratt C, Cummins JN (1976) Pale green lethal gene in apple clones. J Am Soc Hortic Sci 101:679–684

    Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, Van de Weg WE, Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hortic 663:51–56

    CAS  Google Scholar 

  • Yang H, Korban SS (1996) Screening apples for OPD20/600 using sequence-specific primers. Theor Appl Genet 92:263–266

    Article  CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Kvarnheden A, Morris B (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    CAS  Google Scholar 

  • You M, Boersma JG, Buirchell BJ, Sweetingham MW, Siddique KH, Yang H (2005) A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cell Mol Biol Lett 10:123–134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Omura for his suggestions. We also thank Ms. K. Shiratori and Ms. M. Jin for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Igarashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igarashi, M., Abe, Y., Hatsuyama, Y. et al. Linkage maps of the apple (Malus × domestica Borkh.) cvs ‘Ralls Janet’ and ‘Delicious’ include newly developed EST markers. Mol Breeding 22, 95–118 (2008). https://doi.org/10.1007/s11032-008-9159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9159-5

Keywords

Navigation