Skip to main content

Advertisement

Log in

Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Partial resistance to Mycosphaerella pinodes in pea is quantitatively inherited. Genomic regions involved in resistance (QTLs) have been previously identified in the pea genome, but the molecular basis of the resistance is still unknown. The objective of this study was to map resistance gene analogs (RGA) and defense-related (DR) genes in the JI296 × DP RIL population that has been used for mapping QTLs for resistance to M. pinodes, and identify co-localizations between candidate genes and QTLs. Using degenerate oligonucleotide primers designed on the conserved motifs P-loop and GLPL of cloned resistance genes, we isolated and cloned 16 NBS-LRR sequences, corresponding to five distinct classes of RGAs. Specific second-generation primers were designed for each class. RGAs from two classes were located on the linkage group (LG) VII. Another set of PCR-based markers was designed for four RGA sequences previously isolated in pea and 12 previously cloned DR gene sequences available in databases. Out of the 16 sequences studied, the two RGAs RGA-G3A and RGA2.97 were located on LG VII, PsPRP4A was located on LG II, Peachi21, PsMnSOD, DRR230-b and PsDof1 were mapped on LG III and peaβglu and DRR49a were located on LG VI. Two co-localizations between candidate genes and QTLs for resistance to M. pinodes were observed on LG III, between the putative transcription factor PsDof1 and the QTL mpIII-1 and between the pea defensin DRR230-b gene and the QTL mpIII-4. Another co-localization was observed on LG VII between a cluster of RGAs and the QTL mpVII-1. The three co-localizations appear to be located in chromosomal regions containing other disease resistance or DR genes, suggesting an important role of these genomic regions in defense responses against pathogens in pea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarts MGM, Lintel Hekkert BT, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:215–258

    Google Scholar 

  • Ali SM, Nitschke LF, Dubé AJ, Krause MR, Cameron B (1978) Selection of pea lines for resistance to pathotypes of Ascochyta pinodes, A. pisi and Phoma medicaginis var. pinodella. Aust J Agric Res 29:841–849

    Article  Google Scholar 

  • Ali-Khan ST, Zimmer RC, Kenaschuk EO (1973) Reaction of pea introductions to ascochyta foot rot and powdery mildew. Can Plant Dis Surv 53:155–156

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1994) ZMAP-a QTL cartographer. In: Proceedings of the 5th World congress on genetics applied to livestock production. Guelph, Ontario, pp 65–66

  • Basten CJ, Weir BS, Zeng ZB (2001) QTL CARTOGRAPHER, version 1.15. Department of Statistics, North Carolina State University, Raleigh, N.C

  • Bertioli DJ, Leal-Bertioli SCM, Lion MB, Santos VL, Pappas Jr G, Cannon SB, Guimarães PM (2003) A large scale analysis of resistance gene homologues in Arachis. Mol Genet Genomics 270:34–45

    Article  PubMed  CAS  Google Scholar 

  • Bretag TW (1989) Resistance of pea cultivars to ascochyta blight caused by Mycosphaerella pinodes, Phoma medicaginis and Ascochyta pisi. Ann Appl Biol 114(Suppl):156–157

    Google Scholar 

  • Bretag TW (1991) Epidemiology and control of ascochyta blight of field peas. PHD thesis, La Trobe University. Victoria, Australia

  • Brunel D, Froger N, Pelletier G (1999) Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome 42:387–402

    Article  PubMed  CAS  Google Scholar 

  • Chang MM, Culley DE, Hadwiger LA (1993) Nucleotide sequence of a pea (Pisum sativum L.) β-1,3-glucanase gene. Plant Physiol 101:1121–1122

    Article  PubMed  CAS  Google Scholar 

  • Chang MM, Horovitz D, Culley D, Hadwiger LA (1995) Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding, fungal infection and the elicitor chitosan. Plant Mol Biol 28:105–111

    Article  PubMed  CAS  Google Scholar 

  • Chiang CC, Hadwiger LA (1991) The Fusarium solani-induced expression of a pea gene family encoding high cysteine content proteins. Mol Plant Microbe Interact 4:324–331

    PubMed  CAS  Google Scholar 

  • Clulow SA, Matthews P, Lewis BG (1991) Genetical analysis of resistance to Mycosphaerella pinodes in pea seedlings. Euphytica 58:183–189

    Article  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs. Mol Plant Microbe Interact 10:968–978

    Google Scholar 

  • Coyne CJ, Inglis DA, Whitehead SJ, McClendon MT, Muehlbauer FJ (2000) Chromosomal location of Fwf, the Fusarium wilt race 5 resistance gene in Pisum sativum. Pisum Genet 32:20–22

    Google Scholar 

  • Culley DE, Brown S, Parsons MA, Hadwiger LA, Fristensky B (1995a) Cloning and sequencing of disease-resistance response gene DRR49a (Ypr10.PS.1; pI49) from Pisum sativum (Accession No. U31669) (PGR95–070). Plant Physiol 109:722

    Google Scholar 

  • Culley DE, Horovitz D, Hadwiger LA (1995b) Molecular characterization of disease-resistance response gene DRR206-d from Pisum sativum (L.). Plant Physiol 107:301–302

    Article  CAS  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, de Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Fourmann M, Charlot F, Froger N, Delourme R, Brunel D (2001) Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 44:1083–1099

    Article  PubMed  CAS  Google Scholar 

  • Frew TJ, Russell AC, Timmerman-Vaughan GM (2002) Sequence tagged site markers linked to the sbm1 gene for resistance to pea seedborne mosaic virus in pea. Plant Breed 121:512–516

    Article  CAS  Google Scholar 

  • Gao Z, Johansen E, Eyers S, Thomas CL, Ellis THN, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J 40:376–385

    Article  PubMed  CAS  Google Scholar 

  • Geffroy V, Sévignac M, De Oliveira JCF, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant Microbe Interact 3:287–296

    Google Scholar 

  • Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM (1997) A linkage map of pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299

    Article  CAS  Google Scholar 

  • Gritton ET, Hagedorn DJ (1980) Linkage of the En and st genes in peas. Pisum Newsl 12:26–27

    Google Scholar 

  • Hunter PJ, Ellis N, Taylor JD (1998) Mapping genes for resistance to Pseudomonas syringae pv. pisi in Pisum sativum. http://www.bspp.org.uk/icpp98/3.4/29.html

  • Hunter PJ, Ellis N, Taylor JD (2001) Association of dominant loci for resistance to Pseudomonas syringae pv. pisi with linkage groups II, VI and VII of Pisum sativum. Theor Appl Genet 103:129–135

    Article  CAS  Google Scholar 

  • Kanazin V, Frederick Marek L, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  PubMed  CAS  Google Scholar 

  • Kiba A, Toyoda K, Yamada T, Ichinose Y, Shiraishi T (1995) Specific inhibition of cell wall-bound ATPase by fungal suppressor from Mycosphaerella pinodes. Plant Cell Physiol 36:809–817

    CAS  Google Scholar 

  • Kiba A, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1996) Specific response of partially purified cell wall-bound ATPase to fungal suppressor. Plant Cell Physiol 37:207–214

    CAS  Google Scholar 

  • Kiba A, Miyake C, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1997) Superoxide generation in extracts from isolated plant cell walls is regulated by fungal signal molecules. Phytopathology 87:846–852

    CAS  PubMed  Google Scholar 

  • Kraft JM, Dunne B, Goulden D, Armstrong S (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253

    Google Scholar 

  • Lai FM, DeLong C, Mei K, Wignes T, Fobert PR (2002) Analysis of the DRR230 family of pea defensins: gene expression pattern and evidence of broad host-range antifungal activity. Plant Sci 163:855–864

    Article  CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genet 14:421–429

    Article  PubMed  CAS  Google Scholar 

  • Lincoln M, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP ver. 3.0. Technical report, 3rd edn. Whitehead Institute, Cambridge, Mass

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hènaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111(6):1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Marx GA, Weeden NF, Provvidenti R (1985) Linkage relationships among markers in chromosome 3 and En, a gene conferring virus resistance. Pisum Newsl 17:57–60

    Google Scholar 

  • Matsubara M, Kuroda H (1987) The structure and physiological activity of a glycoprotein secreted from conidia of Mycosphaerella pinodes. II. Chem Pharm Bull (Tokyo) 35:249–255

    CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    PubMed  CAS  Google Scholar 

  • NSF Plant Genome Project (2002) Towards the complete gene inventory and function of the Medicago truncatula genome. In: National Science Foundation Plant Genome Program Report for DBI-0110203. http://www.medicago.ucdavis.edu/Medicago/pdffile/2002MtNSF_Report.pdf

  • Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B, Palloix A (1999) Disease resistance gene analogs as candidates for QTLs involved in pepper/pathogen interactions. Genome 42:1100–1110

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001a) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Pflieger S, Palloix A, Caranta C, Blattes A, Lefebvre V (2001b) Defense response genes co-localize with quantitative disease resistance loci in pepper. Theor Appl Genet 103:920–929

    Article  CAS  Google Scholar 

  • Prioul S, Onfroy C, Tivoli B, Baranger A (2003) Controlled environment assessment of partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) seedlings. Euphytica 131:121–130

    Article  CAS  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  PubMed  CAS  Google Scholar 

  • Provvidenti R, Hampton RO (1991) Chromosomal distribution of genes for resistance to seven potyviruses in Pisum sativum. Pisum Genet 23:26–28

    Google Scholar 

  • Sävenstrand H, Brosché M, Ängehagen M, Strid A (2000) Molecular markers for ozone stress isolated by suppression substractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant Cell Environ 23:689–700

    Article  Google Scholar 

  • Seki H, Nakamura N, Marutani M, Okabe T, Sanematsu S, Inagaki Y, Toyoda K, Shiraishi T, Yamada T, Ichinose Y (2002) Molecular cloning of cDNA for a novel pea Dof protein, PsDof1, and its DNA-binding activity to the promoter of PsDof1 gene. Plant Biotechnol 19:251–260

    CAS  Google Scholar 

  • Seki H, Marutani M, Inagaki Y, Yoyoda K, Shiraishi T, Ichinose Y (2003) Possible involvement of AAAG motif and PsDof1 in elicitor-induced gene expression in pea. Sci Fac Agr Okayama Univ 92:21–26 (http://www.lib.okayama-u.ac.jp/www/aggaku/pdf/92_021_026.pdf)

  • Shiraishi T, Oku H, Yamashita M, Ouchi S (1978a) Elicitor and suppressor of pisatin induction in spore germination fluid of pea pathogen, Mycosphaerella pinodes. Ann Phytopathol Soc Jpn 44:659–665

    Google Scholar 

  • Shiraishi T, Oku H, Tsuji Y, Ouchi S (1978b) Inhibitory effect of pisatin on infection process of Mycosphaerella pinodes on pea. Ann Phytopathol Soc Jpn 44:641–645

    Google Scholar 

  • Shiraishi T, Saitoh K, Mo Kim H, Kato T, Tahara M, Oku H, Yamada T, Ichinose Y (1992) Two suppressors, supprescins A and B, secreted by a pea pathogen, Mycosphaerella pinodes. Plant Cell Physiol 33:663–667

    CAS  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to Mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Timmerman GM, Frew TJ, Miller AL, Weeden NF, Jermyn WA (1993) Linkage mapping of sbm-1, a gene conferring resistance to pea seed-borne mosaic virus, using molecular markers in Pisum sativum. Theor Appl Genet 85:609–615

    Article  CAS  Google Scholar 

  • Timmerman GM, Frew TJ, Weeden NF, Miller AL, Goulden DS (1994) Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Weeden NF (2000) Characterization and linkage mapping of R-gene analogous DNA sequences in pea (Pisum sativum L.). Theor Appl Genet 101:241–247

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Russel AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of Ascochyta blight of pea. Crop Sci 42:2100–2111

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell A, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631

    Article  PubMed  CAS  Google Scholar 

  • Toyoda K, Shiraishi T, Yoshioka H, Yamada T, Ichinose Y, Oku H (1992) Regulation of polyphosphoinositide metabolism in pea plasma membranes by elicitor and suppressor from a pea pathogen, Mycosphaerella pinodes. Plant Cell Physiol 33:445–452

    CAS  Google Scholar 

  • Toyoda K, Shiraishi T, Yamada T, Ichinose Y, Oku H (1993) Rapid changes in polyphosphoinositide metabolism in pea in response to fungal signals. Plant Cell Physiol 34:729–735

    CAS  Google Scholar 

  • Toyoda K, Koyama M, Mizukoshi R, Ichinose Y, Yamada T, Shiraishi T (1998) Phosphorylation of phosphatidylinositols and production of lysophospholipid in pea plasma membrane are coordinately regulated by elicitor and suppressor from Mycosphaerella pinodes. Sci Rep Fac Agr Okayama Univ 87:109–116

    CAS  Google Scholar 

  • Trognitz F, Manosalva P, Gysin R, Niño-Liu D, Simon R, del Rosario Herrera M, Trognitz B, Ghislain M, Nelson R (2002) Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja x Dihaploid S. tuberosum hybrids. Mol Plant Microbe Interact 15:587–597

    PubMed  CAS  Google Scholar 

  • Ugozzoli L, Wallace RB (1991) Allele-specific polymerase chain reaction. Methods Enzymol 2:42–48

    Article  CAS  Google Scholar 

  • Vad K, de Neergaard E, Madriz-Ordenana K, Mikkelsen JD, Collinge DB (1993) Accumulation of defense-related transcripts and cloning of a chitinase mRNA from pea leaves (Pisum sativum L.) inoculated with Ascochyta pisi Lib. Plant Sci 92:69–79

    Article  CAS  Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4

    Google Scholar 

  • Weeden NF, Tonguc M, Boone WE (1999) Mapping coding sequences in pea by PCR. Pisum Genet 31:30–32

    Google Scholar 

  • Wong-Vega L, Burke JJ, Allen AH (1991) Isolation and sequence analysis of a cDNA that encodes pea manganese superoxide dismutase. Plant Mol Biol 17:1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Wroth JM (1999) Evidence suggests that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait. Euphytica 107:193–204

    Article  Google Scholar 

  • Wu Q, Preisig CL, VanEtten HD (1997) Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum. Plant Mol Biol 35:551–560

    Article  PubMed  CAS  Google Scholar 

  • Xue AG, Warkentin TD, Greeniaus MT, Zimmer RC (1996) Genotypic variability in seedborne infection of field pea by Mycosphaerella pinodes and its relation to foliar disease severity. Can J Plant Pathol 18:370–374

    Article  Google Scholar 

  • Xue AG, Warkentin TD (2001) Partial resistance to Mycosphaerella pinodes in field pea. Can J Plant Sci 81:535–540

    Google Scholar 

  • Yamada T, Tanaka Y, Sriprasertsak P, Kato H, Hashimoto T, Kawamata S, Ichinose Y, Kato H, Shiraishi T, Oku H (1992) Phenylalanine ammonia-lyase genes from Pisum sativum: structure, organ-specific expression and regulation by fungal elicitor and suppressor. Plant Cell Physiol 33:715–725

    CAS  Google Scholar 

  • Yamada T, Shiraishi T, Ichinose Y, Kato H, Seki H, Murakami Y (1996) Regulation of genes for phenylpropanoid synthesis in pea elicitor and suppressor. In: Mills D, Kunoh H, Keen NT, Mayama S (eds) Molecular aspects of phatogenicity and resistance: requirement for signal transduction. American Phytopathological Society, St Paul, pp 151–162

    Google Scholar 

  • Yoshioka H, Shiraishi T, Nasu K, Yamada T, Ichinose Y, Oku H (1992) Suppression of activation of chitinase and ß-1,3-glucanase in pea epicotyls by orthovanadate and suppressor from Mycosphaerella pinodes. Ann Phytopathol Soc Jpn 58:405–410

    CAS  Google Scholar 

  • Yu YG, Buss GR, Saghai Maroof MA (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93:11751–11756

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Cannon SB, Young ND, Cook DR (2002) Phylogeny and genomic organization of the TIR and Non-TIR NBS-LRR resistance genes family in Medicago truncatula. Mol Plant Microbe Interact 15:529–539

    PubMed  CAS  Google Scholar 

  • Zlamal P (1984) Genetics of horizontal resistance to anthracnose in peas. Sbornik UVTIZ. Genet Slechteni 20:191–192

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Union Nationale Interprofessionnelle des Plantes riches en Protéines (UNIP). We would like to thank K. Haurogne, M. Goussot and D. Brunel (INRA Versailles) for their technical assistance and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baranger.

Additional information

Communicated by D. A. Hoisington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prioul-Gervais, S., Deniot, G., Receveur, EM. et al. Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114, 971–984 (2007). https://doi.org/10.1007/s00122-006-0492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0492-y

Keywords

Navigation