Skip to main content
Log in

The Effect of surface Treatment of Alumina NanoParticles with a Silane Coupling Agent on the Mechanical Properties of Polymer Nanocomposites

  • Published:
Mechanics of Composite Materials Aims and scope

Surface-treated and untreated alumina nanoparticles were mixed with a polycarbonate matrix at different weight percentages and the mechanical properties of the nanocomposites produced were determined by subjecting them to quasi-static tension and Charpy impact tests. The results obtained showed that the surface treatment of nanoparticles had improved their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Tehrani, A. Y. Boroujeni, T. B. Hartman, T. P. Haugh, S. W. Case, and M. S. Al-Haik, “Mechanical characterization and impact damage assessment of a woven-carbon-fiber reinforced carbon nanotube–epoxy composite,” Compos. Sci. Technol., 75, 42–48 (2013).

    Article  Google Scholar 

  2. J. S. Park, S J Gwon, Y. M. Lim, and Y. Ch. Nho, “Influence of the stretching temperature on an alumina-filled microporous high-density polyethylene membrane,” Mater. Des., 31, 3215–3219 (2010).

    Article  Google Scholar 

  3. S. Siengchin, J. Karger-Kocsis, and R. Thomann, “Alumina-filled polystyrene micro- and nanocomposites prepared by melt mixing with and without latex precompounding: Structure and properties,” J. Appl. Polym. Sci., 105, 2963–2972 (2007)..

    Article  Google Scholar 

  4. S. Fu, Yu. Wang, and Ya. Wang, “Tension testing of polycarbonate at high strain rates,” Polym. Test., 28, 724–729 (2009)..

    Article  Google Scholar 

  5. Q. H. Shaha and Y. A. Abkar, “Effect of distance from the support on the penetration mechanism of clamped circular polycarbonate armor plates,” Int. J. Impact Eng., 35, 1244–1250 (2008)..

    Article  Google Scholar 

  6. Q. H. Shaha, “Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts,” Int. J. Impact Eng., 36, 1128–1135 (2009).

    Article  Google Scholar 

  7. H. Vahabi, O. Eterradossi, L. Ferry, C. Longuet, R. Sonnier, and J. M. Lopez-Cuesta, “Polycarbonate nanocomposite with improved fire behavior, physical and psychophysical transparency,” Eur. Polym. J., 49, No. 2, 319–327 (2013).

    Article  Google Scholar 

  8. M. U. Orden, D. Pascual, A. Antelo, J. A. Andrés, V. Lorenzo, and J. M. Urreaga, “Polymer degradation during the melt processing of clay-reinforced polycarbonate nanocomposites,” Polymer Degrad. Stab., 98, No. 6, 1110–1117 (2013).

    Article  Google Scholar 

  9. P. Jindal, S. Pande, P. Sharma, V. Mangla, A. Chaudhury, D. Patel, B. P. Singh, R. B. Mathur, and M. Goyal, “High strain rate behavior of multi-walled carbon nanotube–polycarbonate composites,” Composites: Part B: Eng., 45, No. 1, 417–422 (2013).

    Article  Google Scholar 

  10. T. Hanemann, J. Haußelt, and E. Ritzhaupt-Kleissl, “Compounding, microinjection moulding and characterisation of polycarbonate-nanosized alumina composites for application in microoptics,” Microsyst. Technol., 15, 421–427 (2009)..

    Article  Google Scholar 

  11. A. Chandra, L. S. Turng, P. Gopalan, R. M. Rowell, and S. Gong, “Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties,” Compos. Sci. Technol., 68, 768–776 (2008)..

    Article  Google Scholar 

  12. A. Christmann, P. Ienny, J. C. Quantin, A. S. Caro-Bretelle, and J. M. Lopez-Cuesta, “Mechanical behaviour at large strain of polycarbonate nanocomposites during uniaxial tensile test,” Polym., 52, 4033–4044 (2011).

    Article  Google Scholar 

  13. Xi. Zhang and L. C. Simon, “In situ polymerization of hybrid polyethylene-alumina nanocomposites,” Macromol. Mater. Eng., 290, 573–583 (2005)..

    Article  Google Scholar 

  14. S. Zhao, L. S. Schadleer, R. Duncan, H. Hillborg, and T. Auletta, “Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy,” Compos. Sci. Technol., 68, 2965–2975 (2008)..

    Article  Google Scholar 

  15. S. C. Zunjarrao and R. P. Singh, “Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer-sized aluminum particles,” Compos. Sci. Technol., 66, 2296–2305 (2006).

    Article  Google Scholar 

  16. L. T. Truong, Å. Larsen, B. Holme, F. K. Hansen, and J. Roots, “Morphology of syndiotactic polypropylene/alumina nanocomposites,” Polym., 52, 1116–1123 (2011).

    Article  Google Scholar 

  17. Zh. Guo, T. Pereira, O. Choi, Y. Wang, and H. T. Hahn, “Surface-functionalized alumina nanoparticle-filled polymeric nanocomposites with enhanced mechanical properties,” J. Mater. Chem., 16, 2800–2808 (2006)..

    Article  Google Scholar 

  18. URL:www.plastics.bayer.com/Products/Makrolon/ProductList/201305212210/Makrolon-2807.aspx; Bayer Materal Science AG, Polycarbonates Business Unit.August, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amirchakhmaghi.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 51, No. 3, pp. 491–504 , May-June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirchakhmaghi, S., Nia, A.A., Azizpour, G. et al. The Effect of surface Treatment of Alumina NanoParticles with a Silane Coupling Agent on the Mechanical Properties of Polymer Nanocomposites. Mech Compos Mater 51, 347–358 (2015). https://doi.org/10.1007/s11029-015-9506-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9506-7

Keywords

Navigation