Skip to main content
Log in

The effect of polymer grafting in the dispersibility of alumina/polysulfone nanocomposites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

γ-Alumina nanoparticles have been modified with polysulfone (PSU) chains via 1,3-dipolar cycloaddition reaction between functionalized alumina with vinyl groups and terminal azide polysulfone chains of two different molecular weights. Homopolymer nanocomposites have been prepared for the first time by extrusion and microinjection. The effectiveness of the grafts on the dispersiblity has been analyzed in terms of the parameters that govern the wettability between grafted and matrix chains: graft density (σ), graft molecular weight (N) at constant matrix molecular weight (P). The dispersion state and interfacial adhesion of PSU grafted-nanoparticles have been evaluated from laser scanning confocal, FESEM and SEM microscopy. Results show that the incorporation of the modified g-alumina improves the dispersion state in comparison with bare alumina nanoparticles, reducing the average particle size from 5±9 to 1.3±1 microns. Although aggregates are still present the size of the aggregates are also substantially reduced even with low or moderate graft density used in this work, but further improves the interfacial adhesion between nanoparticle and matrix when long PSU chains are grafted even with low-moderate grafting density. These results can be explained by enthalpic compatibility between polysulfone grafted layer and host polysulfone matrix

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Cha, K. W. Kim, G. H. Chu, H. Y. Kim, K. H. Lee, and N. Bhattarai, Macromol. Res., 14, 331 (2006).

    Article  CAS  Google Scholar 

  2. B. Gao, W. Zhang, Q. Lei, and J. Men, Macromol. Res., 21, 599 (2013).

    Article  CAS  Google Scholar 

  3. J. Wang, H. Sun, X. Gao, and C. Gao, Appl. Surf. Sci., 317, 210 (2014).

    Article  CAS  Google Scholar 

  4. M. Saxena, S. Sharma, and A. Bhattacharya, Int. J. Membr. Sci. Technol., 2, 39 (2015).

    Google Scholar 

  5. S. Anaya, B. Serrano, and B. Herrero, ACS Appl. Mater. Interfaces, 6, 14460 (2014).

    Article  CAS  Google Scholar 

  6. A. J. Jose, M. Alagar, and S. P. Thomas, Mater. Manuf. Processes, 27, 247 (2012).

    Article  CAS  Google Scholar 

  7. H. Bai, Y. Zhou, and Z. Liping, Adv. Polym. Technol., 34, (2015).

  8. M. Farrokhnia, M. Rashidzadeh, A. Safekordi, and G. Khanbabaei, Iran. Polym. J., 24, 171 (2015).

    Article  CAS  Google Scholar 

  9. P. Anadão, L. F. Sato, H. Wiebeck, and F. R. Valenzuela-Díaz, Appl. Clay Sci., 48, 127 (2010).

    Article  Google Scholar 

  10. D. Olmos, S. G. Prolongo, and J. González-Benito, Compos. Part B: Eng., 61, 307 (2014).

    Article  CAS  Google Scholar 

  11. A. Dasari, Z. Z. Yu, and Y. W. Mai, Mater. Sci. Eng. R, Reports, 63, 31 (2009).

    Article  Google Scholar 

  12. L. Nayak, D. Khastgir, and T. K. Chaki, J. Mater. Sci., 48, 1492 (2013).

    Article  CAS  Google Scholar 

  13. T. S. Volkova and E. Y. Beider, Theor. Found. Chem. Eng., 45, 717 (2011).

    Article  CAS  Google Scholar 

  14. G. Huang, J. Yang, X. Wang, and J. Gao, Macromol. Res., 21, 27 (2013).

    Article  CAS  Google Scholar 

  15. N. J. Fernandes, H. Koerner, E. P. Giannelis, and R. A. Vaia, MRS Commun., 3, 13 (2013).

    Article  CAS  Google Scholar 

  16. J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, and M. J. Buehler, Polymer (Guildf)., 51, 3321 (2010).

    Article  CAS  Google Scholar 

  17. H. R. Hakimelahi, L. Hu, B. B. Rupp, and M. R. Coleman, Polymer (Guildf)., 51, 2494 (2010).

    Article  CAS  Google Scholar 

  18. B. Zornoza, S. Irusta, C. Téllez, and J. Coronas, Langmuir, 25, 5903 (2009).

    Article  CAS  Google Scholar 

  19. Y. Devrim, S. Erkan, N. Baç, and I. Eroglu, Int. J. Hydrogen Energy, 34, 3467 (2009).

    Article  CAS  Google Scholar 

  20. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, Prog. Polym. Sci., 38, 1232 (2013).

    Article  CAS  Google Scholar 

  21. M. A. Hood, M. Mari, and R. Muñoz-Espí, Materials (Basel)., 7, 4057 (2014).

    Article  CAS  Google Scholar 

  22. S. K. Kumar, N. Jouault, B. Benicewicz, and T. Neely, Macromolecules, 46, 3199 (2013).

    Article  CAS  Google Scholar 

  23. J. Choi, C. M. Hui, M. Schmitt, J. Pietrasik, S. Margel, K. Matyjazsewski, and M. R. Bockstaller, Langmuir, 29, 6452 (2013).

    Article  CAS  Google Scholar 

  24. P. Akcora, S. K. Kumar, V. García Sakai, Y. Li, B. C. Benicewicz, and L. S. Schadler, Macromolecules, 43, 8275 (2010).

    Article  CAS  Google Scholar 

  25. I. Y. Jeon and J. B. Baek, Materials (Basel)., 3, 3654 (2010).

    Article  CAS  Google Scholar 

  26. S. Li, M. M. Lin, M. S. Toprak, D. K. Kim, and M. Muhammed, Nano Rev., 1, 1 (2010).

    Article  Google Scholar 

  27. R. Francis, N. Joy, E. P. Aparna, and R. Vijayan, Polym. Rev., 54, 268 (2014).

    Article  CAS  Google Scholar 

  28. A. Rungta, B. Natarajan, T. Neely, D. Dukes, L. S. Schadler, and B. C. Benicewicz, Macromolecules, 45, 9303 (2012).

    Article  CAS  Google Scholar 

  29. S. Gupta, P. C. Ramamurthy, and G. Madras, Ind. Eng. Chem. Res., 50, 6585 (2011).

    Article  CAS  Google Scholar 

  30. G. G. Vogiatzis and D. N. Theodorou, Macromolecules, 46, 4670 (2013).

    Article  CAS  Google Scholar 

  31. D. Sunday, J. Ilavsky, and D. L. Green, Macromolecules, 45, 4007 (2012).

    Article  CAS  Google Scholar 

  32. Y. Li, P. Tao, A. Viswanath, B. C. Benicewicz, and L. S. Schadler, Langmuir, 29, 1211 (2013).

    Article  Google Scholar 

  33. R. M. Bielecki, P. Doll, and N. D. Spencer, Tribol. Lett., 49, 273 (2013).

    Article  CAS  Google Scholar 

  34. K. S. Iyer and I. Luzinov, Macromolecules, 37, 9538 (2004).

    Article  CAS  Google Scholar 

  35. B. Natarajan, T. Neely, A. Rungta, B. C. Benicewicz, and L. S. Schadler, Macromolecules, 46, 4909 (2013).

    Article  CAS  Google Scholar 

  36. D. L. Green and J. Mewis, Langmuir, 22, 9546 (2006).

    Article  CAS  Google Scholar 

  37. Y. Qiao, X. Yin, L. Wang, M. S. Islam, B. C. Benicewicz, H. J. Ploehn, and C. Tang, Macromolecules, 48, 8998 (2015).

    Article  CAS  Google Scholar 

  38. N. Ogihara, K. Aoki, M. Shimizu, N. Narita, M. Okamoto, H. Kato, and S. Taruta, Nanomedicine, 7, 981 (2012).

    Article  CAS  Google Scholar 

  39. L. T. Truong, Á. Larsen, B. Holme, F. K. Hansen, and J. Roots, Polymer (Guildf)., 52, 1116 (2011).

    Article  CAS  Google Scholar 

  40. C. Dizman, S. Ates, L. Torun, and Y. Yagci, Beilstein J. Org. Chem., 6, 1 (2010).

    Article  Google Scholar 

  41. K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 98, 863 (1998).

    Article  CAS  Google Scholar 

  42. H. Li, Y. Yan, B. Liu, W. Chen, and S. Chen, Powder Technol., 178, 203 (2007).

    Article  CAS  Google Scholar 

  43. S. A. Hosseini, Open J. Phys. Chem., 01, 23 (2011).

    Article  CAS  Google Scholar 

  44. A. Kuznetsova, E. A. Wovchko, E. Wovchko, and J. T. Yates, Advances, 13, 5322 (1997).

    CAS  Google Scholar 

  45. Y. S. Li, P. B. Wright, R. Puritt, T. Tran, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 60, 2759 (2004).

    Article  Google Scholar 

  46. S. Oprea, High Perform. Polym., 24, 389 (2012).

    Article  CAS  Google Scholar 

  47. J. Amici, M. U. Kahveci, P. Allia, P. Tiberto, Y. Yagci, and M. Sangermano, J. Mater. Sci., 47, 412 (2012).

    Article  CAS  Google Scholar 

  48. R. Huisgen, Angew. Chem. Int. Ed. Engl., 2, 565 (1963).

    Article  Google Scholar 

  49. S. Bräse, C. Gil, K. Knepper, and V. Zimmermann, Angew. Chem. Int. Ed., 44, 5188 (2005).

    Article  Google Scholar 

  50. P. Scheiner, Tetrahedron, 24, 349 (1967).

    Article  Google Scholar 

  51. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed., John Willey and Sons, Chichester, 2001.

    Google Scholar 

  52. B. J. Ash, R. W. Siegel, and L. S. Schadler, J. Polym. Sci., Part B: Polym. Phys., 42, 4371 (2004).

    Article  CAS  Google Scholar 

  53. M. Castellano, E. Marsano, A. Turturro, L. Conzatti, and G. Busca, Adsorption, 18, 307 (2012).

    Article  CAS  Google Scholar 

  54. M. Abboud, M. Fontanille, E. Duguet, M. Fontanille, J. Mater. Chem., 7, 1527 (1997).

    Article  CAS  Google Scholar 

  55. S. Yamamoto, M. Ejaz, Y. Tsujii, M. Matsumoto, and T. Fukuda, Macromolecules, 33, 5602 (2000).

    Article  CAS  Google Scholar 

  56. D. Dukes, Y. Li, S. Lewis, B. Benicewicz, L. Schadler, and S. K. Kumar, Macromolecules, 43, 1564 (2010).

    Article  CAS  Google Scholar 

  57. J. F. Moll, P. Akcora, A. Rungta, S. Gong, R. H. Colby, B. C. Benicewicz, and S. K. Kumar, Macromolecules, 44, 7473 (2011).

    Article  CAS  Google Scholar 

  58. M. J. Hore, J. Ford, K. Ohno, R. J. Composto, and B. Hammouda, Macromolecules, 46, 9341 (2013).

    Article  CAS  Google Scholar 

  59. P. Tao, A. Viswanath, Y. Li, R. W. Siegel, B. C. Benicewicz, and L. S. Schadler, Polymer (United Kingdom), 54, 1639 (2013).

    CAS  Google Scholar 

  60. S. Kim, R. Mangal, and L. Archer, Macromolecules, 48, 6280 (2015).

    Article  CAS  Google Scholar 

  61. I. Borukhov and L. Leibler, Macromolecules, 35, 5171 (2002).

    Article  CAS  Google Scholar 

  62. Pierre-Gilles Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979.

    Google Scholar 

  63. Silvia Ioan, Functionalized Polysulfones: Synthesis, Characterization, and Applications; CRC Press, Boca Raton, Florida, 2015.

  64. V. G. V. Schulz and I. Einleitung, Physics (College. Park. Md)., 29, 93 (1958).

    Google Scholar 

  65. M. N. Tchoul, S. P. Fillery, H. Koerner, L. F. Drummy, F. T. Oyerokun, P. A. Mirau, M. F. Durstock, and R. A. Vaia, Chem. Mater., 22, 1749 (2010).

    Article  CAS  Google Scholar 

  66. G. Henn, D. G. Bucknall, M. Stamm, P. Vanhoorne, and R. Je, Macromolecules, 29, 4305 (1996).

    Article  CAS  Google Scholar 

  67. R. Hasegawa, Y. Aoki, and M. Doi, Macromolecules, 29, 6656 (1996).

    Article  CAS  Google Scholar 

  68. P. Auroy, L. Auvray, and L. Léger, Phys. Rev., 66, 2769 (1991).

    Google Scholar 

  69. T. B. Martin, P. M. Dodd, and A. Jayaraman, Phys. Rev. Lett., 110, 1 (2013).

    Google Scholar 

  70. J. Roovers, R. Ethier, and P. M. Toporowski, High Perform. Polym., 3, 151 (1990).

    Google Scholar 

  71. M. Wang, C. Y. Yue, and B. Chua, J. Mater. Sci. Mater. Med., 12, 821 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Serrano.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llorente, A., Serrano, B. & Baselga, J. The effect of polymer grafting in the dispersibility of alumina/polysulfone nanocomposites. Macromol. Res. 25, 11–20 (2017). https://doi.org/10.1007/s13233-016-4150-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4150-1

Keywords

Navigation