Skip to main content
Log in

Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Maple syrup urine disease (MSUD) is an inherited aminoacidopathy resulting from dysfunction of the branched-chain keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine and valine as well as their corresponding transaminated branched-chain α-ketoacids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. However, the effect of accumulating α-ketoacids in MSUD on neurotrophic factors has not been investigated. Thus, the objective of the present study was to evaluate the effects of acute intracerebroventricular administration of α-ketoisocaproic acid (KIC) on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels in the brains of young male rats. Ours results showed that intracerebroventricular administration of KIC decreased BDNF levels in hippocampus, striatum and cerebral cortex, without induce a detectable change in pro-BDNF levels. Moreover, NGF levels in the hippocampus were reduced after intracerebroventricular administration of KIC. In conclusion, these data suggest that the effects of KIC on demyelination and memory processes may be mediated by reduced trophic support of BDNF and NGF. Moreover, lower levels of BDNF and NGF are consistent with the hypothesis that a deficit in this neurotrophic factor may contribute to the structural and functional alterations of brain underlying the psychopathology of MSUD, supporting the hypothesis of a neurodegenerative process in MSUD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84. doi:10.1016/j.brainres.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  • Araujo P et al. (2001) Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 38:529–537

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M, Barden AT, Dutra-Filho CS, Wajner M, Vargas CR (2008) Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis 23:71–80. doi:10.1007/s11011-007-9077-y

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG et al. (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42:462–466. doi:10.1016/j.clinbiochem.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Belrose JC, Masoudi R, Michalski B, Fahnestock M (2014) Increased pro-nerve growth factor and decreased brain-derived neurotrophic factor in non-Alzheimer's disease tauopathies. Neurobiol Aging 35:926–933. doi:10.1016/j.neurobiolaging.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  • Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167

    Article  CAS  PubMed  Google Scholar 

  • Canossa M, Griesbeck O, Berninger B, Campana G, Kolbeck R, Thoenen H (1997) Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc Natl Acad Sci U S A 94:13279–13286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canossa M, Gartner A, Campana G, Inagaki N, Thoenen H (2001) Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. The EMBO journal 20:1640–1650. doi:10.1093/emboj/20.7.1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellerino A, Carroll P, Thoenen H, Barde YA (1997) Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol Cell Neurosci 9:397–408. doi:10.1006/mcne.1997.0641

    Article  CAS  PubMed  Google Scholar 

  • Chan JR et al. (2004) NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43:183–191. doi:10.1016/j.neuron.2004.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp. 1971–2005

    Google Scholar 

  • Chuang DT, Wynn M, Shih VE (2008) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WL, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp. 1971–2005

    Google Scholar 

  • de Castro VV, de Boer MA, Diligenti F, Brinco F, Mallmann F, Mello CF, Wajner M (2004) Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats. Pharmacol Biochem Behav 77:183–190

    Article  Google Scholar 

  • Du Y, Fischer TZ, Clinton-Luke P, Lercher LD, Dreyfus CF (2006) Distinct effects of p75 in mediating actions of neurotrophins on basal forebrain oligodendrocytes. Mol Cell Neurosci 31:366–375. doi:10.1016/j.mcn.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  • Garzon D, Yu G, Fahnestock M (2002) A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex. J Neurochem 82:1058–1064

    Article  CAS  PubMed  Google Scholar 

  • Gelfo F, Tirassa P, De Bartolo P, Caltagirone C, Petrosini L, Angelucci F (2011) Brain and serum levels of nerve growth factor in a rat model of Alzheimer's disease. J Alzheimer's disease : JAD 25:213–217. doi:10.3233/JAD-2011-110047

    CAS  PubMed  Google Scholar 

  • Glaser V et al. (2010) The intra-hippocampal leucine administration impairs memory consolidation and LTP generation in rats. Cell Mol Neurobiol 30:1067–1075. doi:10.1007/s10571-010-9538-4

    Article  CAS  PubMed  Google Scholar 

  • Gnahn H, Hefti F, Heumann R, Schwab ME, Thoenen H (1983) NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res 285:45–52

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Long D, Song C, Li X (2009) Recombinant human NGF-loaded microspheres promote survival of basal forebrain cholinergic neurons and improve memory impairments of spatial learning in the rat model of Alzheimer's disease with fimbria-fornix lesion. Neurosci Lett 453:204–209. doi:10.1016/j.neulet.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  • Haddad JJ, Land SC (2002) Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis. Br J Pharmacol 135:520–536. doi:10.1038/sj.bjp.0704467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57:846–851

    Article  CAS  PubMed  Google Scholar 

  • Howell RK, Lee M (1963) Influence of alpha-ketoacids on the respiration of brain in vitro. Proc Soc Exp Biol Med 113:660–663

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi:10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata E, Asanuma M, Nishibayashi S, Kondo Y, Ogawa N (1997) Different effects of oxidative stress on activation of transcription factors in primary cultured rat neuronal and glial cells Brain research. Mol Brain Res 50:213–220

    Article  CAS  PubMed  Google Scholar 

  • Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399. doi:10.1007/s00234-003-0955-7

    Article  PubMed  Google Scholar 

  • Jean YY, Lercher LD, Dreyfus CF (2008) Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol 4:35–42. doi:10.1017/S1740925X09000052

    Article  PubMed  Google Scholar 

  • Jouvet P, Kozma M, Mehmet H (2000a) Primary human fibroblasts from a maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci 926:116–121

    Article  CAS  PubMed  Google Scholar 

  • Jouvet P et al. (2000b) Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell 11:1919–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee D et al. (2013) Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis 36:945–953. doi:10.1007/s10545-012-9582-y

    Article  CAS  PubMed  Google Scholar 

  • Klein RL, Hirko AC, Meyers CA, Grimes JR, Muzyczka N, Meyer EM (2000) NGF gene transfer to intrinsic basal forebrain neurons increases cholinergic cell size and protects from age-related, spatial memory deficits in middle-aged rats. Brain Res 875:144–151

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948. doi:10.1126/science.1065057

    Article  CAS  PubMed  Google Scholar 

  • Lim KC, Lim ST, Federoff HJ (2003) Neurotrophin secretory pathways and synaptic plasticity. Neurobiol Aging 24:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614. doi:10.1038/nrn1726

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89:312–323. doi:10.1016/j.nlm.2007.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meakin SO, Shooter EM (1992) The nerve growth factor family of receptors. Trends Neurosci 15:323–331

    Article  CAS  PubMed  Google Scholar 

  • Mendell LM, Munson JB, Arvanian VL (2001) Neurotrophins and synaptic plasticity in the mammalian spinal cord. J Physiol 533:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mescka C et al. (2011) In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab Brain Dis 26:21–28. doi:10.1007/s11011-011-9238-x

    Article  CAS  PubMed  Google Scholar 

  • Mescka CP et al. (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci 31:21–24. doi:10.1016/j.ijdevneu.2012.10.109

    Article  CAS  PubMed  Google Scholar 

  • Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV (1997) Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci Off J Soc Neurosci 17:8476–8490

    CAS  Google Scholar 

  • Mu JS, Li WP, Yao ZB, Zhou XF (1999) Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res 835:259–265

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ et al. (2003) Preservation of brain nerve growth factor in mild cognitive impairment and Alzheimer disease. Arch Neurol 60:1143–1148. doi:10.1001/archneur.60.8.1143

    Article  PubMed  Google Scholar 

  • Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 63:71–124

    Article  CAS  PubMed  Google Scholar 

  • Nagahara AH et al. (2009) Long-term reversal of cholinergic neuronal decline in aged non-human primates by lentiviral NGF gene delivery. Exp Neurol 215:153–159. doi:10.1016/j.expneurol.2008.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates vol 2. Academic Press, San Diego

    Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63:641–649

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer's disease. J Neurochem 93:1412–1421. doi:10.1111/j.1471-4159.2005.03135.x

    Article  CAS  PubMed  Google Scholar 

  • Rantamaki T et al. (2013) The impact of Bdnf gene deficiency to the memory impairment and brain pathology of APPswe/PS1dE9 mouse model of Alzheimer's disease. PLoS One 8:e68722. doi:10.1371/journal.pone.0068722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564. doi:10.1098/rstb.2006.1894

    Article  CAS  Google Scholar 

  • Ribeiro CA et al. (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 33:114–124. doi:10.1007/s11064-007-9423-9

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al. (2012a) Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease. Mol Neurobiol 45:279–286. doi:10.1007/s12035-012-8243-3

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al. (2012b) DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab 106:169–174. doi:10.1016/j.ymgme.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al. (2012c) Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res 231:92–96. doi:10.1016/j.bbr.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al. (2013a) Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 36:721–730. doi:10.1007/s10545-012-9549-z

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al. (2013b) Acute and chronic administration of the branched-chain amino acids decreases nerve growth factor in rat hippocampus. Mol Neurobiol 48:581–589. doi:10.1007/s12035-013-8447-1

    Article  CAS  PubMed  Google Scholar 

  • Scaini G et al. (2015) Acute Administration of Branched-Chain Amino Acids Increases the Pro-BDNF/Total-BDNF Ratio in the Rat Brain. Neurochem Res 40:885–893. doi:10.1007/s11064-015-1541-1

    Article  CAS  PubMed  Google Scholar 

  • Schonberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75. doi:10.1016/j.ymgme.2004.01.016

    Article  CAS  PubMed  Google Scholar 

  • Sgaravatti AM et al. (2003) Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639:232–238

    Article  CAS  PubMed  Google Scholar 

  • Snyderman SE, Norton PM, Roitman E, Holt LE, Jr. (1964) Maple Syrup Urine Disease, with Particular Reference to Dietotherapy. Pediatrics 34:454–472

    CAS  PubMed  Google Scholar 

  • Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281. doi:10.1146/annurev.neuro.24.1.1217

    Article  CAS  PubMed  Google Scholar 

  • Soule J, Messaoudi E, Bramham CR (2006) Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans 34:600–604. doi:10.1042/BST0340600

    Article  CAS  PubMed  Google Scholar 

  • Taketomi T, Kunishita T, Hara A, Mizushima S (1983) Abnormal protein and lipid compositions of the cerebral myelin of a patient with maple syrup urine disease. Jpn J Exp Med 53:109–116

    CAS  PubMed  Google Scholar 

  • Tavares RG, Santos CE, Tasca CI, Wajner M, Souza DO, Dutra-Filho CS (2000) Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci 181:44–49

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Srinivasan B, Wordinger RJ, Roque RS (2003) Glutamate stimulates neurotrophin expression in cultured Muller cells. Brain Res Mol Brain Res 111:189–197

    Article  CAS  PubMed  Google Scholar 

  • Treacy E, Clow CL, Reade TR, Chitayat D, Mamer OA, Scriver CR (1992) Maple syrup urine disease: interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherit Metab Dis 15:121–135

    Article  CAS  PubMed  Google Scholar 

  • Tribble D, Shapira R (1983) Myelin proteins: degradation in rat brain initiated by metabolites causative of maple syrup urine disease. Biochem Biophys Res Commun 114:440–446

    Article  CAS  PubMed  Google Scholar 

  • Tyler WJ, Perrett SP, Pozzo-Miller LD (2002) The role of neurotrophins in neurotransmitter release. Neuroscientist 8:524–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasques VC, Brinco F, Wajner M (2005) Intrahippocampal administration of the branched-chain alpha-hydroxy acids accumulating in maple syrup urine disease compromises rat performance in aversive and non-aversive behavioral tasks. J Neurol Sci 232:11–21. doi:10.1016/j.jns.2004.12.015

    Article  Google Scholar 

  • Verderio C, Bianco F, Blanchard MP, Bergami M, Canossa M, Scarfone E, Matteoli M (2006) Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. Brain Cell Biol 35:187–201. doi:10.1007/s11068-007-9011-6

    Article  CAS  PubMed  Google Scholar 

  • Vondran MW, Clinton-Luke P, Honeywell JZ, Dreyfus CF (2010) BDNF+/− mice exhibit deficits in oligodendrocyte lineage cells of the basal forebrain. Glia 58:848–856. doi:10.1002/glia.20969

    PubMed  PubMed Central  Google Scholar 

  • Wajner M, Vargas CR (1999) Reduction of plasma concentrations of large neutral amino acids in patients with maple syrup urine disease during crises. Arch Dis Child 80:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wajner M, Coelho DM, Barschak AG, Araujo PR, Pires RF, Lulhier FL, Vargas CR (2000) Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis 23:505–512

    Article  CAS  PubMed  Google Scholar 

  • Walsh KS, Scott MN (2010) Neurocognitive profile in a case of maple syrup urine disease. Clin Neuropsychol 24:689–700. doi:10.1080/13854040903527279

    Article  PubMed  Google Scholar 

  • Walsh GS, Krol KM, Crutcher KA, Kawaja MD (1999) Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. The J Neurosci Official J Soc Neurosci 19:4155–4168

    CAS  Google Scholar 

  • Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS (2010) Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals 18:186–202. doi:10.1159/000323170

    Article  CAS  PubMed  Google Scholar 

  • Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70:304–322. doi:10.1002/dneu.20765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zielke HR, Huang Y, Tildon JT, Zielke CL, Baab PJ (1996) Elevation of amino acids in the interstitial space of the rat brain following infusion of large neutral amino and keto acids by microdialysis: alpha-ketoisocaproate infusion. Dev Neurosci 18:420–425

    Article  CAS  PubMed  Google Scholar 

  • Zielke HR, Zielke CL, Baab PJ, Collins RM (2002) Large neutral amino acids auto exchange when infused by microdialysis into the rat brain: implication for maple syrup urine disease and phenylketonuria. Neurochem Int 40:347–354

    Article  PubMed  Google Scholar 

  • Zou J, Crews F (2006) CREB and NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:385–405. doi:10.1007/s10571-006-9045-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Laboratory of Bioenergetics (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). This research was supported by grants from Universidade do Extremo Sul Catarinense (UNESC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wisniewski, M.S.W., Carvalho-Silva, M., Gomes, L.M. et al. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis 31, 377–383 (2016). https://doi.org/10.1007/s11011-015-9768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9768-8

Keywords

Navigation