Skip to main content

Advertisement

Log in

α-Keto Acids Accumulating in Maple Syrup Urine Disease Stimulate Lipid Peroxidation and Reduce Antioxidant Defences in Cerebral Cortex From Young Rats

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Maple syrup urine disease (MSUD) is an inherited neurometabolic disorder caused by deficiency of branched-chain α-keto acid dehydrogenase complex activity which leads to tissue accumulation of the branched-chain α-keto acids (BCKAs) α-ketoisocaproic acid (KIC), α-ketoisovaleric acid (KIV) and α-keto-β-methylvaleric acid (KMV) and their respective amino acids. Neuropathologic findings characteristic of the disease are cerebral edema and atrophy, whose pathophysiology is poorly known. In the present study, we investigated the in vitro effect of BCKAs on various parameters of oxidative stress, namely chemiluminescence (CL), thiobarbituric acid–reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), and the activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) in cerebral cortex of 30-day-old rats. The major effects observed were with KIC, which significantly increased CL and TBA-RS measurements, decreased TRAP and TAR values, and markedly inhibited GPx activity. KMV and KIV increased CL and decreased TRAP and TAR values. In contrast, these compounds did not affect CAT and SOD activities. Taken together, it was shown that: the BCKAs studied stimulated lipid peroxidation and reduced the brain antioxidant defences, suggesting an increased production of free radicals. In case the in vitro effects here detected also occur in vivo in MSUD, it can be presumed that oxidative stress might contribute, at least in part, to the brain damage found in the affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105:121–126.

    CAS  Google Scholar 

  • Annopkumar-Dukie, S., Lack, B., McPhail, T.N., Lambat, Z., Maharaj, D., and Daya, S. (2003). Indomethacin Reduces Lipid Peroxidation in Rat Brain Homogenate by Binding Fe2+. Metab Brain Dis. 18(1):1–9.

    Article  PubMed  Google Scholar 

  • Araújo, P., Wassermann, G.F., Tallini, K., Furlanetto, V., Vargas, C.R., Wannmacher, C.M.D., Dutra-Filho, C.S., Wyse, A.T.S., and Wajner, M. (2001). Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem. Int. 38:529–537.

    Article  PubMed  Google Scholar 

  • Aspée, A., and Lissi, E.A. (2000). Kinectics and mechanism of the chemiluminescence associated with the free radical-mediated oxidation amino acids. Luminescence 15:273–282.

    Article  PubMed  Google Scholar 

  • Bridi, R., Araldi, J., Sgarbi, M.B., Testa, C.G., Durigon, K., Wajner, M., and Dutra-Filho, C.S. (2003). Induction of oxidative stress in rat brain by the metabolite accumulating in maple syrup urine disease. Int. J. Dev. Neurosci. 21:327–332.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, D.T., and Shih, V.E. (2001). Maple syrup urine disease (branched-chain ketoaciduria). In (C.R. Scriver, A.L. Beaudet, W.L. Sly, and D. Valle, eds.), The Metabolic and Molecular Bases of Inherited Disease, 8th edn., McGraw-Hill, New York, pp.1971–2005.

    Google Scholar 

  • Cleeter, M.W., Cooper, J.M., and Shapira, A.H. (1992). Irreversible inhibition of mitocondrial complex I by 1-methyl-4-phenylpyrydinium: Evidence for free radical involvement. J. Neurochem. 58:786–789.

    CAS  PubMed  Google Scholar 

  • Danner, D.J., and Elsas, L.J. II (1989). Disorders of branched chain amino acid and keto acid metabolism. In (C.R. Scriver, A.L. Beaudet, W.L. Sly, and D. Valle, eds.), The Metabolic Basis of Inherited Disease, 6th edn., McGraw-Hill, New York, pp. 671–692.

    Google Scholar 

  • Dodd, P.R., Wiliams, A.L., Gundlach, A.L., Harper, P.A.W., Healy, P.J., Dennis, J.A., and Johnston, G.A.R. (1992). Glutamate and γ-aminobutyric acid neurotransmitter systems in the acute phase of maple syrup urine disease and citrullinemia encephalopathies in newborn calves. J. Neurochem. 59:582–590.

    CAS  PubMed  Google Scholar 

  • Esterbauer, H., and Cheeseman, K.H. (1990). Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186:407–421.

    CAS  PubMed  Google Scholar 

  • Evelson, P., Travacio, M., Repetto, M., Escobar, J., Llesuy, S., and Lissi, E.A. (2001). Evaluation of total reactive antioxidant potential (trap) of tissue homogenates and their cytosols. Arch. Biochem. Biophys. 388:261–266.

    Article  CAS  PubMed  Google Scholar 

  • Fontella, F.U., Gassen, E., Pulrolnik, V., Wannmacher, C.M.D., Klein, A.B., Wajner, M., and Dutra-Filho, C.S. (2002). Stimulation of lipid peroxidation in vitro in rat brain by metabolites accumulating in maple syrup urine disease. Metab Brain Dis. 17:47–54.

    Article  CAS  PubMed  Google Scholar 

  • González-Flecha, B., Llesuy, S., and Boveris, A. (1991). Hydroperoxide-initiated chemiluminescence: An assay for oxidative stress in biopsies of heart, liver and muscle. Free Radic. Biol. Med. 10:93–100.

    Article  PubMed  Google Scholar 

  • Halestrap, A.P., Brand, M.D., and Denton, R.M. (1974). Inhibition of mitochondrial pyruvate transport by phenylpyruvate and α-ketoisocaproate. Biochim. Biophys. Acta 367:102–108

    CAS  PubMed  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C. (2001a). Detection of free radicals and others reactive species: Trapping and fingerprinting. In (B. Halliwell, and J.M.C. Gutteridge, eds.). Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, pp. 351–425.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C. (2001b). The chemistry of free radicals and related ‘reactive species.’ In (B. Halliwell and J.M.C. Gutteridge, eds.). Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, pp. 37–104.

    Google Scholar 

  • Jouvet, P., Rustin, P., Taylor, D.L., Pocock, J.M., Felderhoff-Mueser, U., Mazarakis, N.D., Sarraf, C., Joashi, U., Koszma, M., Greewood, K., Edwards, A.D., and Mehmet, H. (2000). Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane despolarization or cytochrome c release: Implications for neurological impairment associated with maple syrup urine disease. Mol. Biol. Cell 11:1919–1932.

    CAS  PubMed  Google Scholar 

  • Kohen, R., Vellaichamy, E., Hrbac, J., Gati, I., and Tirosh, O. (2000). Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic. Biol. Med. 28(6):871–879.

    Article  CAS  PubMed  Google Scholar 

  • Land, J.M., Mowbray, J., and Clark, J.B. (1976). Control of pyruvate and β-hydroxybutyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J. Neurochem. 26:823–830.

    CAS  PubMed  Google Scholar 

  • Lissi, E., Pascual, C., and Del Castillo, M.D. (1992). Luminol luminescence induced by 2,2′-azo-bis-(2-amidinopropane) thermolysis. Free Radic. Res. 17:299–311.

    CAS  Google Scholar 

  • Lissi, E., Salim-Hanna, M., Pascual, C., and Del Castillo, M.D. (1995). Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic. Biol. Med. 18:153–158.

    Article  CAS  PubMed  Google Scholar 

  • Lissi, E.A., Cáceres, T., and Videla, L.A. (1988). Visible chemiluminescence from rat brain homogenates undergoing autoxidation. II. Kinetics of the luminescence decay. Free Radic. Biol. Med. 4:93–87.

    Article  CAS  Google Scholar 

  • Llesuy, S.F., Milei, J., Molina, H., Boveris, A., and Milei, S. (1985). Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71:241–249.

    CAS  PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Lewis-Farr, A., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    CAS  PubMed  Google Scholar 

  • Nyhan, W.L. (1984). Maple syrup urine disease: branched-chain ketoaciduria. In (W.L. Nyhan, ed.), Abnormalities in Amino Acid Metabolism in Clinical Medicine, Appleton-Century-Crofts, Norwalk, pp. 21–35.

    Google Scholar 

  • Ogier de Baulny, H., and Saudubray, J.M. (2002). Branched-chain organic acidurias. Semin. Neonatol. 7(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  • Prensky, A.L., and Moser, H.W. (1967). Changes in the amino acid composition of proteolipids of white matter during maturation of the human nervous system. J. Neurochem. 14:117–121.

    CAS  PubMed  Google Scholar 

  • Rice, M.E., and Russo-Menna, I. (1998). Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82:1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • Saudubray, J.M., Ogier, H., Billette de Vilmeur, T., Bonnefont, J.P., Lyonnet, S., Herve, F., Munnich, A., Rabier, D., Coude, M., and Charpentier, C. (1991). Inborn errors of the metabolism of branched-chain amino acids. In (J. Schuab, F. van Hoof, H.L. Vis, eds.), Inborn Errors of Metabolism, Raven Press, New York, pp. 137–153.

    Google Scholar 

  • Schadewaldt, P., and Wendel, U. (1997). Metabolism of branched-chain amino acids in maple syrup urine disease. Eur. J. Pediatr. 156:S62–S66.

    CAS  PubMed  Google Scholar 

  • Schapira, A.H.V. (1998). Human complex I defects in neurodegenerative diseases. Biochim. Biophys. Acta 1364:261–270.

    CAS  PubMed  Google Scholar 

  • Sgaravatti, A.M., Rosa, R.B., Schuck, P.F., Ribeiro, C.A.J., Wannacher, C.M.D., Wyse, A.T.S., Dutra-Filho, C.S., and Wajner, M. (2003). Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease. Biochim. Biophys. Acta 1639:232–238.

    CAS  PubMed  Google Scholar 

  • Snyderman, S.E., Goldstein, F., Sansaricq, C., and Norton, P.M. (1984). The relationship between the branched chain amino acids and their α-ketoacids in maple syrup urine disease. Pediatr. Res. 18:851–853.

    CAS  PubMed  Google Scholar 

  • Snyderman, S.E., Norton, P.M., and Roitman, E. (1964). Maple syrup urine disease with particular reference to diet therapy. Pediatrics 34:454–472.

    CAS  PubMed  Google Scholar 

  • Tavares, R.G., Santos, C.E.S., Tasca, C., Wajner, M., Souza, D.O., and Dutra-Filho, C.S. (2000). Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J. Neurol. Sci. 181:44–49.

    Article  CAS  PubMed  Google Scholar 

  • Tipton, K.F., and Singer, T.P. (1993). Advances in our understanding of the mechanisms of neurotoxicity of MPTP and related compounds. J. Neurochem. 61:1191–1206.

    CAS  PubMed  Google Scholar 

  • Treacy, E., Clow, C.L., Reade, T.R., Chitayat, D., Mamer, O.A., and Scriver, C.R. (1992). Maple syrup urine disease: Interrelationship between branched chain amino-, oxo-, and hydroxyacids; implications for treatment; association with CNS dysmelination. J. Inherit. Metab. Dis. 15:121–135.

    CAS  PubMed  Google Scholar 

  • Wendel, A. (1981). Glutathione peroxidase. Methods Enzymol. 77:325–332.

    CAS  PubMed  Google Scholar 

  • Yudkoff, M., Daikhin, Y., Lin, Z.P., Nissim, I., Stern, J., Pleasure, D., and Nissim, I. (1994). Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J. Neurochem. 62:1192–1202.

    CAS  PubMed  Google Scholar 

  • Zielke, H.R., Huang, Y., Tildon, J.T., Zielke, C.L., and Baab, P.J. (1996). Elevation of amino acids in the interstitial space of the rat brain following infusion of large neutral amino and keto acids by microdialysis: Leucine infusion. Dev. Neurosci. 18:420–425.

    CAS  PubMed  Google Scholar 

  • Zielke, H.R., Zielke, C.L., Baab, P.J., and Collins, R.M. (2002). Large neutral amino acids auto exchange whwn infused by microdialysis into the rat brain: Implications for maple syrup urine disease and phenylketonuria. Neurochem. Int. 40:347–354.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Severo Dutra-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridi, R., Braun, C.A., Zorzi, G.K. et al. α-Keto Acids Accumulating in Maple Syrup Urine Disease Stimulate Lipid Peroxidation and Reduce Antioxidant Defences in Cerebral Cortex From Young Rats. Metab Brain Dis 20, 155–167 (2005). https://doi.org/10.1007/s11011-005-4152-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-005-4152-8

Key words

Navigation