Skip to main content

Advertisement

Log in

Impact of hypoxia on male reproductive functions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Male reproductive functions, which include testicular steroidogenesis, spermatogenesis, and sexual/erectile functions are key in male fertility, but may be adversely altered by several factors, including hypoxia. This review demonstrates the impact of hypoxia on male reproductive functions. Acute exposure to hypoxia promotes testosterone production via stimulation of autophagy and upregulation of steroidogenic enzymes and voltage-gated L-type calcium channel, nonetheless, chronic exposure to hypoxia impairs steroidogenesis via suppression of the hypothalamic–pituitary–testicular axis. Also, hypoxia distorts spermatogenesis and reduces sperm count, motility, and normal forms via upregulation of VEGF and oxidative stress-sensitive signaling. Furthermore, hypoxia induces sexual and erectile dysfunction via a testosterone-dependent downregulation of NO/cGMP signaling and upregulation of PGE1/TGFβ1-driven penile endothelial dysfunction. Notably, hypoxia programs male sexual function and spermatogenesis/sperm quality via feminization and demasculinization of males and oxidative stress-mediated alteration in sperm DNA methylation. Since oxidative stress plays a central role in hypoxia-induced male reproductive dysfunction, studies exploring the effects of antioxidants and upregulation of transcription of antioxidants on hypoxia-induced male reproductive dysfunction are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Ajayi AF, Akhigbe RE (2020) The physiology of male reproduction: Impact of drugs and their abuse on male fertility. Andrologia 00:e13672. https://doi.org/10.1111/and.13672

    Article  Google Scholar 

  2. Gurung P, Yetiskul E, Jialal I (2022) Physiology, male reproductive system [Updated 2021 May 9]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK538429/

  3. Mawhinney M, Mariotti A (2000) Physiology, pathology and pharmacology of the male reproductive system. Periodontol 61(1):232–251. https://doi.org/10.1111/j.1600-0757.2011.00408.x

    Article  Google Scholar 

  4. Akhigbe RE, Dutta S, Sengupta P, Chikara BS (2021) Adropin in immune and energy balance: ‘a molecule of interest’ in male reproduction. Chem Biol Lett 8(4):213–223

    CAS  Google Scholar 

  5. Nassar GN, Leslie SW (2022) Physiology, testosterone [Updated 2022 Jan 4]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK526128/

  6. Liu L, Kang J, Ding X, Chen D, Zhou Y, Ma H (2015) Dehydroepiandrosterone-regulated testosterone biosynthesis via activation of the ERK1/2 signaling pathway in primary rat leydig cells. Cell Physiol Biochem 36(5):1778–1792. https://doi.org/10.1159/000430150

    Article  CAS  PubMed  Google Scholar 

  7. Labrie F, Bélanger A, Bélanger P, Bérubé R, Martel C, Cusan L, Gomez J, Candas B, Chaussade V, Castiel I, Deloche C, Leclaire J (2007) Metabolism of DHEA in postmenopausal women following percutaneous administration. J Steroid Biochem Mol Biol 103(2):178–188. https://doi.org/10.1016/j.jsbmb.2006.09.034

    Article  CAS  PubMed  Google Scholar 

  8. Nishimura H, L’Hernault SW (2017) Spermatogenesis. Curr Biol 27(18):R988–R994. https://doi.org/10.1016/j.cub.2017.07.067

    Article  CAS  PubMed  Google Scholar 

  9. Alwaal A, Breyer BN, Lue TF (2015) Normal male sexual function: emphasis on orgasm and ejaculation. Fertil Steril 104(5):1051–1060. https://doi.org/10.1016/j.fertnstert.2015.08.033

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ajayi AF, Akhigbe RE (2020) Assessment of sexual behaviour and fertility indices in male rabbits following chronic codeine use. Andrology 8:509–515

    Article  CAS  PubMed  Google Scholar 

  11. Hull EM, Muschamp JW, Sato S (2004) Dopamine and serotonin: influences on male sexual behavior. Physiol Behav 83(2):291–307

    Article  CAS  PubMed  Google Scholar 

  12. Zvara P, Sioufi R, Schipper HM et al (1995) Nitric oxide mediated erectile activity is a testosterone dependent event: a rat erection model. Int J Impot Res 7:209–219

    CAS  PubMed  Google Scholar 

  13. Nagase S, Takemura K, Ueda A, Hirayama A (1997) Novel non-enzymatic pathway for the generation of nitric oxide by the reaction of hydrogen peroxide and D- or L-arginine. Biochem Biophys Res Commun 233:150–153

    Article  CAS  PubMed  Google Scholar 

  14. Akhigbe RE, Hamed MA (2020) Possible links between COVID-19 and male fertility. Asian Pac J Reprod 9(5):211–214

    Article  CAS  Google Scholar 

  15. Akhigbe RE, Dutta S, Hamed MA, Ajayi AF, Sengupta P, Ahmad G (2022) Viral infections and male infertility: a comprehensive review of the role of oxidative stress. Front Reprod Health 4:782915

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ajayi AF, Akhigbe RE (2020) Codeine-induced sperm DNA damage is mediated predominantly by oxidative stress rather than apoptosis. Redox Rep 25(1):33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ajayi AF, Akhigbe RE (2020) In vivo exposure to codeine induces reproductive toxicity: role of HER2 and p53/Bcl-2 signaling pathway. Heliyon 6:e05589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akhigbe R, Ajayi A (2020) Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. PLoS ONE 15(3):e0224052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oluwole DT, Akhigbe RE, Ajayi AF (2020) Rohypnol-induced sexual dysfunction is via suppression of hypothalamic-pituitary-testicular axis: an experimental study in rats. Andrologia 00:e13931. https://doi.org/10.1111/and.13931

    Article  CAS  Google Scholar 

  20. Gat Y, Gornish M, Navon U, Chakraborty J, Bachar GN, Ben-Shlomo I (2006) Right varicocele and hypoxia, crucial factors in male infertility: fluid mechanics analysis of the impaired testicular drainage system. Reprod Biomed Online 13:510–515. https://doi.org/10.1016/s1472-6483(10)60638

    Article  PubMed  Google Scholar 

  21. Akhigbe RE, Hamed MA, Odetayo AF, Akhigbe TM, Ajayi AF, Ajibogun H (2021) Omega-3 fatty acid rescues ischemia/perfusion-induced testicular and sperm damage via modulation of lactate transport and xanthine oxidase/uric acid signaling. Biomed Pharmacother 142:111975

    Article  CAS  PubMed  Google Scholar 

  22. Reyes JG, Farias JG, Henríquez-Olavarrieta S, Madrid E, Parraga M, Zepeda AB, Moreno RD (2016) The hypoxic testicle: physiology and pathophysiology. Oxid Med Cell Longev 2012:929285. https://doi.org/10.1155/2012/929285

    Article  CAS  Google Scholar 

  23. Torres M, Laguna-Barraza R, Dalmases M, Calle A, Pericuesta E, Montserrat JM, Navajas D, Gutierrez-Adan A, Farré R (2014) Male fertility is reduced by chronic intermittent hypoxia mimicking sleep apnea in mice. Sleep 37(11):1757–1765. https://doi.org/10.5665/sleep.4166

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jensen CF, Ostergren SP, Dupree PJ, MOhl MDA, Sonksen J, Fode M (2017) Varicocele and male infertility. Nat Rev Urol 14:523–533

    Article  PubMed  Google Scholar 

  25. Gaspar JM, Velloso LA (2018) Hypoxia inducible factor as a central regulator of metabolism - implications for the development of obesity. Front Neurosci 12:813

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang F, Niu L, Li S, Le W (2019) Pathological impacts of chronic hypoxia on Alzheimer’s disease. ACS Chem Neurosci 10(2):902–909

    Article  CAS  PubMed  Google Scholar 

  27. Afolabi OA, Anyogu DC, Hamed MA, Odetayo AF, Adeyemi DH, and Akhigbe RE (2022) Glutamine prevents upregulation of NF-kB signaling and caspase 3 activation in ischaemia/reperfusion-induced testicular damage: An animal model. Biomed Pharmacotherapy 150:113056. https://doi.org/10.1016/j.biopha.2022.113056

  28. Mesarwi OA, Loomba R, Malhotra A (2019) Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease. Am J Respir Crit Care Med 199(7):830–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peinado VI, Santos S, Ramírez J, Roca J, Rodriguez-Roisin R, Barberà JA (2002) Response to hypoxia of pulmonary arteries in chronic obstructive pulmonary disease: an in vitro study. Eur Respir J 20(2):332–338. https://doi.org/10.1183/09031936.02.00282002

    Article  CAS  PubMed  Google Scholar 

  30. Kent BD, Mitchell PD, McNicholas WT (2011) Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis 6:199–208. https://doi.org/10.2147/COPD.S10611

    Article  PubMed  PubMed Central  Google Scholar 

  31. McNicholas WT, Hansson D, Schiza S, Grote L (2019) Sleep in chronic respiratory disease: COPD and hypoventilation disorders. Eur Respir Rev 28(153):190064. https://doi.org/10.1183/16000617.0064-2019

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vermeylen D, Franco P, Hennequin Y, Pardou A, Brugmans M, Simon P, Hassid S (2005) Laryngeal oedema in neonatal apnoea and bradycardia syndrome (a pilot study). Early Hum Dev 81(4):361–367. https://doi.org/10.1016/j.earlhumdev.2004.09.006

    Article  PubMed  Google Scholar 

  33. Vogtel M, Michels A (2010) Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol 10(3):206–213. https://doi.org/10.1097/ACI.0b013e32833903a6

    Article  PubMed  Google Scholar 

  34. Shetty S, Parthasarathy S (2015) Obesity hypoventilation syndrome. Curr Pulmonol Rep 4(1):42–55. https://doi.org/10.1007/s13665-015-0108-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aboussouan LS, Mireles-Cabodevila E (2017) Sleep-disordered breathing in neuromuscular disease: diagnostic and therapeutic challenges. Chest 152(4):880–892. https://doi.org/10.1016/j.chest.2017.03.023

    Article  PubMed  Google Scholar 

  36. Sarkar M, Niranjan N, Banyal PK (2017) Mechanisms of hypoxemia. Lung India 34(1):47–56. https://doi.org/10.4103/0970-2113.197116

    Article  PubMed  PubMed Central  Google Scholar 

  37. Altemeier WA, Robertson HT, Mckinney S, Glenny RW (1998) Pulmonary embolization causes hypoxemia by redistributing regional blood flow without changing ventilation. J Appl Physiol 85(6):2337–2343. https://doi.org/10.1152/jappl.1998.85.6.2337

    Article  CAS  PubMed  Google Scholar 

  38. Spearman AD, Kindel SJ, Woods RK, Ginde S (2019) Arteriovenous fistula creation for hypoxia after single ventricle palliation: a single-institution experience and literature review. Congenit Heart Dis 14(6):1199–1206. https://doi.org/10.1111/chd.12828

    Article  PubMed  Google Scholar 

  39. Ho V (2008) Current concepts in the management of hepatopulmonary syndrome. Vasc Health Risk Manag 4(5):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brinkman JE, Sharma S (2022) Physiology, pulmonary [Updated 2021 Jul 22]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK482426/

  41. Light RB (1999) Pulmonary pathophysiology of pneumococcal pneumonia. Semin Respir Infect 14(3):218–226

    CAS  PubMed  Google Scholar 

  42. Tojo K, Nagamine Y, Yazawa T, Mihara T, Baba Y, Ota S, Goto T, Kurahashi K (2015) Atelectasis causes alveolar hypoxia-induced inflammation during uneven mechanical ventilation in rats. Intensive Care Med Exp 3(1):56. https://doi.org/10.1186/s40635-015-0056-z

    Article  PubMed  Google Scholar 

  43. Darby IA, Hewitson TD (2016) Hypoxia in tissue repair and fibrosis. Cell Tissue Res 365(3):553–562. https://doi.org/10.1007/s00441-016-2461-3

    Article  CAS  PubMed  Google Scholar 

  44. Jeong JS, Jun JH, Song HJ, Choi SH (2014) Acute pulmonary edema due to hypoxia during a difficult intubation in a rheumatoid arthritis patient. Korean J Anesthesiol 67(Suppl):S74–S76. https://doi.org/10.4097/kjae.2014.67.S.S74

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bhutta BS, Alghoula F, Berim I (2022) Hypoxia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

  46. Semenza GL (2019) Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol 6(59):379–403. https://doi.org/10.1146/annurev-pharmtox-010818-021637

    Article  CAS  Google Scholar 

  47. Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27:281–298. https://doi.org/10.1016/j.cmet.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  48. Li Z, Wang S, Gong C, Hu Y, Liu J, Wang W, Chen Y, Liao Q, He B, Huang Y, Luo Q, Zhao Y, Xiao Y (2021) Effects of environmental and pathological hypoxia on male fertility. Front Cell Dev Biol 9:725933. https://doi.org/10.3389/fcell.2021.725933

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ (2020) Pathophysiological implications of hypoxia in human diseases. J Biomed Sci 27(1):63. https://doi.org/10.1186/s12929-020-00658-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. West JB (1977) State of the art: ventilation-perfusion relationships. Am Rev Respir Dis 116(5):919–943. https://doi.org/10.1164/arrd.1977.116.5.919 (PMID: 921067)

    Article  CAS  PubMed  Google Scholar 

  51. MacIntyre NR (2014) Tissue hypoxia: implications for the respiratory clinician. Respir Care 59(10):1590–1596. https://doi.org/10.4187/respcare.03357

    Article  PubMed  Google Scholar 

  52. Michiels C (2004) Physiological and pathological responses to hypoxia. Am J Pathol 164(6):1875–1882. https://doi.org/10.1016/S0002-9440(10)63747-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perlman J (2007) Pathogenesis of hypoxic-ischemic brain injury. J Perinatol 27:S39–S46. https://doi.org/10.1038/sj.jp.7211716

    Article  CAS  Google Scholar 

  54. Howard RS, Holmes PA, Koutroumanidis MA (2011) Hypoxic-ischaemic brain injury. Pract Neurol 11(1):4–18. https://doi.org/10.1136/jnnp.2010.235218

    Article  PubMed  Google Scholar 

  55. Sekhon MS, Ainslie PN, Griesdale DE (2017) Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care 21:90. https://doi.org/10.1186/s13054-017-1670-9

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lacerte M, Hays Shapshak A, Mesfin FB (2022) Hypoxic brain injury [Updated 2021 Aug 14]. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK537310/

  57. Morand J, Arnaud C, Pepin JL, Godin-Ribuot D (2018) Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci Rep 8(1):2997. https://doi.org/10.1038/s41598-018-21064-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104(24):2981–2989. https://doi.org/10.1161/hc4801.100038

    Article  CAS  PubMed  Google Scholar 

  59. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ) 3:83–92. https://doi.org/10.2147/HP.S93413

    Article  Google Scholar 

  60. Pogorelic Z, Mustapic K, Jukic M, Todoric J, Mrklic I, Mestrovic J, Furlan D (2016) Management of acute scrotum in children: a 25- year single center experience on 558 pediatric patients. Can J Urol 23:8594–8601

    PubMed  Google Scholar 

  61. Fahim MS, Messiha FS, Girgis SM (1980) Effect of acute and chronic simulated high altitude on male reproduction and testosterone level. Arch Androl 4(3):217–219. https://doi.org/10.3109/01485018008986966

    Article  CAS  PubMed  Google Scholar 

  62. Aasebø U, Gyltnes A, Bremnes RM, Aakvaag A, Slørdal L (1993) Reversal of sexual impotence in male patients with chronic obstructive pulmonary disease and hypoxemia with long-term oxygen therapy. J Steroid Biochem Mol Biol 46(6):799–803. https://doi.org/10.1016/0960-0760(93)90321-m

    Article  PubMed  Google Scholar 

  63. Soukhova-O’Hare GK, Shah ZA, Lei Z, Nozdrachev AD, Rao CV, Gozal D (2008) Erectile dysfunction in a murine model of sleep apnea. Am J Respir Crit Care Med 178(6):644–650. https://doi.org/10.1164/rccm.200801-190OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilson EN, Anderson M, Snyder B, Duong P, Trieu J, Schreihofer DA, Cunningham RL (2018) Chronic intermittent hypoxia induces hormonal and male sexual behavioral changes: hypoxia as an advancer of aging. Physiol Behav 189:64–73. https://doi.org/10.1016/j.physbeh.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ayman AH, Anas AO, Yasser AA, Masad AM, Abdullah AS, Mazen A, Salih AG, Saad AS, Abdulraheem A, AbdulRhman AG, Al-Gthami O (2021) Levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone and prolactin at moderate altitude inhabitant male. Pak J Biol Sci 24(2):188–192. https://doi.org/10.3923/pjbs.2021.188.192

    Article  CAS  PubMed  Google Scholar 

  66. Wang X, Pan L, Zou Z, Wang D, Lu Y, Dong Z, Zhu L (2017) Hypoxia reduces testosterone synthesis in mouse Leydig cells by inhibiting NRF1-activated StAR expression. Oncotarget 8(10):16401–16413. https://doi.org/10.18632/oncotarget.14842

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang X, Jin L, Jiang S, Wang D, Lu Y, Zhu L (2019) Transcription regulation of NRF1 on StAR reduces testosterone synthesis in hypoxemic murine. J Steroid Biochem Mol Biol 191:105370. https://doi.org/10.1016/j.jsbmb.2019.04.019

    Article  CAS  PubMed  Google Scholar 

  68. Keenan DM, Hefti JP, Veldhuis JD, Wolff MV (2019) Regulation and adaptation of endocrine axes at high altitude. Am J Physiol Endocrinol Metab 318:E297–E309

    Article  PubMed  Google Scholar 

  69. Bouissou P, Péronnet F, Brisson G, Hélie R, Ledoux M (1986) Metabolic and endocrine responses to graded exercise under acute hypoxia. Eur J Appl Physiol Occup Physiol 55(3):290–294. https://doi.org/10.1007/BF02343801

    Article  CAS  PubMed  Google Scholar 

  70. Hwang GS, Chen ST, Chen TJ, Wang SW (2009) Effects of hypoxia on testosterone release in rat Leydig cells. Am J Physiol Endocrinol Metab 297(5):E1039–E1045. https://doi.org/10.1152/ajpendo.00010.2009

    Article  CAS  PubMed  Google Scholar 

  71. Raff H, Hong JJ, Oaks MK, Widmaler EP (2003) Adrenocortical responses to ACTH in neonatal rats: effect of hypoxia from birth on corticosterone, StAR, and PBR. Am J Physiol Regul Integr Comp Physiol 284:R78–R85

    Article  CAS  PubMed  Google Scholar 

  72. Ma Y, Zhou Y, Zhu YC, Wang SQ, Ping P, Chen XF (2018) Lipophagy contributes to testosterone biosynthesis in male rat Leydig cells. Endocrinology 159(2):1119–1129. https://doi.org/10.1210/en.2017-03020

    Article  CAS  PubMed  Google Scholar 

  73. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayayiotidid MI, Franco R (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal 21(1):66–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tse G, Yan BP, Chan YW, Tian XY, Huang Y (2016) Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: the link with cardiac arrhythmogenesis. Front Physiol 7:313

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen W, Zhang Z, Chang C, Yang Z, Wang P, Fu H, Wei X, Chen E, Tan S, Huang W, Sun L, Ni T, Yang Y, Wang Y (2020) A bioenergetic shift is required for spermatogonial differentiation. Cell Discov 18(6):56. https://doi.org/10.1038/s41421-020-0183-x

    Article  CAS  Google Scholar 

  76. Jankovic VL, Stefanovic V (2014) Hypoxia and spermatogenesis. Int Urol Nephrol 46:887–894

    Article  Google Scholar 

  77. Liao W, Cai M, Chen J, Huang J, Liu F, Jiang C, Gao Y (2010) Hypobaric hypoxia causes deleterious effects on spermatogenesis in rats. Reproduction 139:1031–1038

    Article  CAS  PubMed  Google Scholar 

  78. Farias JG, Bustos-Obregon E, Orellana R, Bucarey JL, Quiroz E, Reyes JG (2005) Effects of chronic hypobaric hypoxia on testis histology and round spermatid oxidative metabolism. Andrologia 37(1):47–52

    Article  CAS  PubMed  Google Scholar 

  79. Golden AL, Moline JM, Bar-chama N (1999) Male reproduction and environmental and occupational exposures: a review of epidemiologic methods. Revista de Salud pública de México 41:93–105

    Article  Google Scholar 

  80. Garrido N, Mosaeguer M, Simon C, Pellicer A, Remohi YJ (2004) Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl 6:59–65

    CAS  PubMed  Google Scholar 

  81. Nalbandian A, Dettin L, Dym M, Ravindranath N (2003) Expression of vascular endothelial growth factor receptors during male germ cell differentiation in the mouse. Biol Reprod 69:985–994. https://doi.org/10.1095/biolreprod.102.013581

    Article  CAS  PubMed  Google Scholar 

  82. Korpelainen EI, Karkkainen MJ, Tenhunen A, Lakso M, Rauvala H, Vierula M, Parvinen M, Alitalo K (1998) Overexpression of VEGF in testis and epididymis causes infertility in transgenic mice: evidence for nonendothelial targets for VEGF. J Cell Biol 143(6):1705–1712. https://doi.org/10.1083/jcb.143.6.1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Berthaut I, Guignedoux G, Kirsch-Noir F, de Larouziere V, Ravel C, Bachir D, Galactéros F, Ancel PY, Kunstmann JM, Levy L, Jouannet P, Girot R, Mandelbaum J (2008) Influence of sickle cell disease and treatment with hydroxyurea on sperm parameters and fertility of human males. Haematologica 93(7):988–993. https://doi.org/10.3324/haematol.11515

    Article  CAS  PubMed  Google Scholar 

  84. De Sanctis V, Borsari G, Brachi S, Govoni M, Carandina G (2018) Spermatogenesis in young adult patients with beta-thalassaemia major longterm treated with desferrioxamine. Georgian Med News 156:74–77

    Google Scholar 

  85. Vargas A, Bustos-Obregon E, Hartley R (2011) Effects of hypoxia on epididymal sperm parameters and protective role of ibuprofen and melatonin. Biol Res 44:161–167

    Article  CAS  PubMed  Google Scholar 

  86. Saxena DK (1995) Effect of hypoxia by intermittent altitude exposure on semen characteristics and testicular morphology of male rhesus monkeys. Int J Biometeorol 38:137–140

    Article  CAS  PubMed  Google Scholar 

  87. Verratti V, Di Giulio C, D’Angeli A, Tafuri A, Francavilla S, Pelliccione F (2016) Sperm forward motility is negatively affected by short-term exposure to altitude hypoxia. Andrologia 48:800–806

    Article  CAS  PubMed  Google Scholar 

  88. Graham H, Samuel PSR, Helen SF, Matthew GB, Stephen W, Anthony SC, Gary SC (2016) Sperm motility and fertilisation success in an acidified and hypoxic environment. ICES J Marine Sci 73(3):783–790

    Article  Google Scholar 

  89. Bencic D, Krisfalusi M, Cloud J, Ingermann R (1999) ATP levels of chinook salmon (Oncorhynchus tshawytscha) sperm following in vitro exposure to various oxygen tensions. Fish Physiol Biochem 20:389–397. https://doi.org/10.1023/A:1007749703803

    Article  CAS  Google Scholar 

  90. Wu RS, Zhou BS, Randall DJ, Woo NY, Lam PK (2003) Aquatic hypoxia is an disrupter and impairs fish reproduction. Environ Sci Technol 37(6):1137–1141. https://doi.org/10.1021/es0258327

    Article  CAS  PubMed  Google Scholar 

  91. Shin PK, Leung JY, Qiu JW, Ang PO, Chiu JM, Thiyagarajan V, Cheung SG (2014) Acute hypoxic exposure affects gamete quality and subsequent fertilization success and embryonic development in a serpulid polychaete. Mar Pollut Bull 85(2):439–445. https://doi.org/10.1016/j.marpolbul.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  92. Billard R, Cosson MP (1990) The energetics of fish sperm motility. In: Gagnon C (ed) Controls of sperm motility: biological and clinical aspects. CRC Press Inc., Boca Raton, pp 153–173

    Google Scholar 

  93. Fitzpatrick JL, Craig PM, Bucking C, Balshine S, Wood CM, McClelland GB (2009) Sperm performance under hypoxic conditions in the intertidal fish Porichthys notatus. Can J Zool 87(5):464

    Article  Google Scholar 

  94. Gasco M, Rubio J, Chung A, Villegas L, Gonzales GF (2003) Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats. Andrologia 35:368–374

    CAS  PubMed  Google Scholar 

  95. Akhigbe RE, Hamed MA, Aremu AO (2021) HAART exacerbates testicular damage and impaired spermatogenesis in anti-Koch-treated rats via dysregulation of lactate transport and glutathione content. Reprod Toxicol 103:96–107

    Article  CAS  PubMed  Google Scholar 

  96. Cikutovic M, Fuentes N, Bustos-Obregón E (2009) Effect of intermittent hypoxia on the reproduction of rats exposed to high altitude in the Chilean Altiplano. High Alt Med Biol 10(4):357–363

    Article  PubMed  Google Scholar 

  97. Luo Y, Liao W, Chen Y, Cui J, Liu F, Jiang C, Gao W, Gao Y (2011) Altitude can alter the mtDNA copy number and nDNA integrity in sperm. J Assist Reprod Genet 28:951–956

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zheng S, Liu Y, Li P, Tian H (2019) Short-term high-altitude exposure (3600 m) alters the type distribution of sperm deformity. High Alt Med Biol 20(2):198–202. https://doi.org/10.1089/ham.2018.0133

    Article  PubMed  Google Scholar 

  99. Gonzales GF, Lozano-Hernandez R, Gasco M, Gonzales-Castaneda C, Tapia V (2012) Resistance of sperm motility to serum testosterone in men with excessive erythrocytosis at high altitude. Horm Metab Res 44:987–992

    Article  CAS  PubMed  Google Scholar 

  100. He J, Cui J, Wang R, Gao L, Gao X, Yang L, Zhang Q, Cao J, Yu W (2015) Exposure to hypoxia at high altitude (5380 m) for 1 year induces reversible effects on semen quality and serum reproductive hormone levels in young male adults. High Alt Med Biol 16:216–222

    Article  CAS  PubMed  Google Scholar 

  101. Verratti V, Falone S, Fanò G, Paoli A, Reggiani C, Tenaglia R, Di Giulio C (2011) Effects of hypoxia on nocturnal erection quality: a case report from the Manaslu expedition. J Sex Med 8(8):2386–2390. https://doi.org/10.1111/j.1743-6109.2011.02320.x

    Article  PubMed  Google Scholar 

  102. Verratti V, Di Giulio C, Berardinelli F, Pellicciotta M, Di Francesco S, Iantorno R, Nicolai M, Gidaro S, Tenaglia R (2007) The role of hypoxia in erectile dysfunction mechanisms. Int J Impot Res 19(5):496–500. https://doi.org/10.1038/sj.ijir.3901560

    Article  CAS  PubMed  Google Scholar 

  103. Palmer RM, Moncada S (1989) A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun 158:348–352

    Article  CAS  PubMed  Google Scholar 

  104. Kwon NS, Nathan CF, Gilker C, Griffith OW, Matthews DE, Stuehr DJ (1990) citrulline production from L-arginine by macrophage nitric oxide synthase. The ureido oxygen derives from dioxygen. J Biol Chem 265:13442–13445

    Article  CAS  PubMed  Google Scholar 

  105. Antezana AM, Kacimi R, Trong JL, Marchal M, Abousahl I, Dubray C (1994) Richalet JP (1985) Adrenergic status of humans during prolonged exposure to the altitude of 6,542 m. J Appl Physiol 76(3):1055–1059. https://doi.org/10.1152/jappl.1994.76.3.1055

    Article  CAS  PubMed  Google Scholar 

  106. Kanstrup IL, Poulsen TD, Hansen JM, Andersen LJ, Bestle MH, Christensen NJ, Olsen NV (1999) Blood pressure and plasma catecholamines in acute and prolonged hypoxia: effects of local hypothermia. J Appl Physiol 87(6):2053–2058. https://doi.org/10.1152/jappl.1999.87.6.2053

    Article  CAS  PubMed  Google Scholar 

  107. Akhigbe RE, Ajayi AF (2021) The impact of reactive oxygen species in the development of cardiometabolic disorders: a review. Lipids Health Dis 20:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moreland RB (1998) Is there a role of hypoxemia in penile fibrosis: a viewpoint presented to the Society for the Study of Impotence. Int J Impot Res 10:113–120

    Article  CAS  PubMed  Google Scholar 

  109. Hirshkowitz M, Schmidt MH (2005) Sleep-related erections: clinical perspectives and neural mechanisms. Sleep Med Rev 9:311–329

    Article  PubMed  Google Scholar 

  110. Yafi FA, Jenkins L, Albersen M, Corona G, Isidori AM, Goldfarb S, Maggi M, Nelson CJ, Parish S, Salonia A, Tan R, Mulhall JP, Hellstrom WJ (2016) Erectile dysfunction. Nat Rev Dis Primers 2:16003. https://doi.org/10.1038/nrdp.2016.3

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hermans RH, McGivern RF, Chen W, Longo LD (1993) Altered adult sexual behavior in the male rat following chronic prenatal hypoxia. Neurotoxicol Teratol 15(6):353–363. https://doi.org/10.1016/0892-0362(93)90051-o

    Article  CAS  PubMed  Google Scholar 

  112. Ward IL (1972) Prenatal stress feminizes and demasculinizes the behavior of males. Science 175(4017):82–84. https://doi.org/10.1126/science.175.4017.82

    Article  CAS  PubMed  Google Scholar 

  113. Dahlöf LG, Hård E, Larsson K (1977) Influence of maternal stress on offspring sexual behaviour. Anim Behav 25(4):958–968. https://doi.org/10.1016/0003-3472(77)90047-1

    Article  PubMed  Google Scholar 

  114. Wang SY, Lau K, Lai KP, Zhang JW, Tse AC, Li JW, Tong Y, Chan TF, Wong CK, Chiu JM, Au DW, Wong AS, Kong RY, Wu RS (2016) Hypoxia causes transgenerational impairments in reproduction of fish. Nat Commun 7:12114. https://doi.org/10.1038/ncomms12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lai KP, Li JW, Wang SY, Wan MT, Chan TF, Lui WY, Au DW, Wu RS, Kong RY (2018) Transcriptomic analysis reveals transgenerational effect of hypoxia on the neural control of testicular functions. Aquat Toxicol 195:41–48. https://doi.org/10.1016/j.aquatox.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  116. Bahreinian M, Tavalaee M, Abbasi H, Kiani-Esfahani A, Shiravi AH, Nasr-Esfahani MH (2015) DNA hypomethylation predisposes sperm to DNA damage in individuals with varicocele. Syst Biol Reprod Med 61:179–186. https://doi.org/10.3109/19396368.2015.1020116

    Article  CAS  PubMed  Google Scholar 

  117. Ma Y, Zhou Y, Xiao Q, Zou SS, Zhu YC, Ping P, Chen XF (2021) Seminal exosomal miR-210-3p as a potential marker of Sertoli cell damage in Varicocele. Andrology 9(1):451–459. https://doi.org/10.1111/andr.12913

    Article  CAS  PubMed  Google Scholar 

  118. Ata-Abadi NS, Mowla SJ, Aboutalebi F, Dormiani K, Kiani-Esfahani A, Tavalaee M, Nasr-Esfahani MH (2020) Hypoxia-related long noncoding RNAs are associated with varicocele-related male infertility. PLoS ONE 15(4):e0232357. https://doi.org/10.1371/journal.pone.0232357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88(5):529–535

    Article  CAS  PubMed  Google Scholar 

  120. Lee MY, Griendling KK (2008) Redox signaling, vascular function, and hypertension. Antioxidants Redox Signal 10(6):1045–1059

    Article  CAS  Google Scholar 

  121. Hamed MA, Aremu AO, Akhigbe RE (2021) Concomittant administration of HAART aggravates anti-Koch-induced oxidative hepatorenal damage via dysregulation of glutathione and elevation of uric acid production. Biomed Pharmacother 137:111309

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions Conceptualization and study design: ARE Contribution of reagents/materials: OPA, ARE, ALO, AAF Writing of first draft: OPA, ARE, ALO, AAF Revision of the first draft: All authors Approval for submission and publication: All authors

Corresponding author

Correspondence to R. E. Akhigbe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyedokun, P.A., Akhigbe, R.E., Ajayi, L.O. et al. Impact of hypoxia on male reproductive functions. Mol Cell Biochem 478, 875–885 (2023). https://doi.org/10.1007/s11010-022-04559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04559-1

Keywords

Navigation