Skip to main content

Advertisement

Log in

Obesity hypoventilation syndrome

  • Sleeping and Breathing (T Lee-Chiong, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Obesity hypoventilation syndrome is a respiratory consequence of morbid obesity that is characterized by alveolar hypoventilation during sleep and wakefulness. The disorder involves a complex interaction between impaired respiratory mechanics, ventilatory drive, and sleep-disordered breathing. Early diagnosis and treatment is important because delay in treatment is associated with significant mortality and morbidity. Available treatment options include noninvasive positive airway pressure (PAP) therapies and weight loss. There is limited long-term data regarding the effectiveness of such therapies. This review outlines the current concepts of clinical presentation and diagnostic and management strategies to help identify and treat patients with obesity hypoventilation syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Flegal KM et al. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.

    PubMed  Google Scholar 

  2. Olson AL, Zwillich C. The obesity hypoventilation syndrome. Am J Med. 2005;118(9):948–56.

    PubMed  Google Scholar 

  3. Mokhlesi B, Kryger MH, Grunstein RR. Assessment and management of patients with obesity hypoventilation syndrome. Proc Am Thorac Soc. 2008;5(2):218–25.

    PubMed Central  PubMed  Google Scholar 

  4. Mokhlesi B, Tulaimat A. Recent advances in obesity hypoventilation syndrome. Chest. 2007;132(4):1322–36.

    PubMed  Google Scholar 

  5. Mokhlesi B et al. Obesity hypoventilation syndrome: prevalence and predictors in patients with obstructive sleep apnea. Sleep Breath. 2007;11(2):117–24.

    PubMed  Google Scholar 

  6. Mokhlesi B. Obesity hypoventilation syndrome: a state-of-the-art review. Respir Care. 2010;55(10):1347–62. discussion 1363-5.

    PubMed  Google Scholar 

  7. Bulbul Y et al. Frequency and predictors of obesity hypoventilation in hospitalized patients at a tertiary health care institution. Ann Thorac Med. 2014;9(2):87–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Kaw R et al. Determinants of hypercapnia in obese patients with obstructive sleep apnea: a systematic review and metaanalysis of cohort studies. Chest. 2009;136(3):787–96.

    PubMed  Google Scholar 

  9. Nowbar S et al. Obesity-associated hypoventilation in hospitalized patients: prevalence, effects, and outcome. Am J Med. 2004;116(1):1–7. Nowbar et al showed that OHS if untreated at hospital discharge is associated with a mortality of 23 % at 18 months, and this reduces to 3 % in adequately treated patients of OHS. Untreated OHS patients are also likely to require invasive mechanical ventilation and hence prolonged hospital stay.

  10. Resta O et al. Prevalence and mechanisms of diurnal hypercapnia in a sample of morbidly obese subjects with obstructive sleep apnoea. Respir Med. 2000;94(3):240–6.

    CAS  PubMed  Google Scholar 

  11. Trakada GP et al. Prevalence and clinical characteristics of obesity hypoventilation syndrome among individuals reporting sleep-related breathing symptoms in northern Greece. Sleep Breath. 2010;14(4):381–6.

    PubMed  Google Scholar 

  12. Verin E, Tardif C, Pasquis P. Prevalence of daytime hypercapnia or hypoxia in patients with OSAS and normal lung function. Respir Med. 2001;95(8):693–6.

    CAS  PubMed  Google Scholar 

  13. Akashiba T et al. Clinical characteristics of obesity-hypoventilation syndrome in Japan: a multi-center study. Intern Med. 2006;45(20):1121–5.

    PubMed  Google Scholar 

  14. Golpe R, Jimenez A, Carpizo R. Diurnal hypercapnia in patients with obstructive sleep apnea syndrome. Chest. 2002;122(3):1100–1. author reply 1101.

    PubMed  Google Scholar 

  15. Laaban JP, Chailleux E. Daytime hypercapnia in adult patients with obstructive sleep apnea syndrome in France, before initiating nocturnal nasal continuous positive airway pressure therapy. Chest. 2005;127(3):710–5.

    PubMed  Google Scholar 

  16. Hart N et al. Obesity hypoventilation syndrome: does the current definition need revisiting? Thorax. 2014;69(1):83–4.

    PubMed  Google Scholar 

  17. Polotsky M et al. Effects of leptin and obesity on the upper airway function. J Appl Physiol. 1985;112(10):1637–43.

    Google Scholar 

  18. Rapoport DM et al. Hypercapnia in the obstructive sleep apnea syndrome. A reevaluation of the "Pickwickian syndrome”. Chest. 1986;89(5):62–-35.

    Google Scholar 

  19. Kress JP et al. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med. 1999;160(3):883–6.

    CAS  PubMed  Google Scholar 

  20. Resta O et al. Hypercapnia in obstructive sleep apnoea syndrome. Neth J Med. 2000;56(6):215–22.

    CAS  PubMed  Google Scholar 

  21. Piper AJ. Obesity hypoventilation syndrome—the big and the breathless. Sleep Med Rev. 2011;15(2):79–89.

    PubMed  Google Scholar 

  22. Behazin N et al. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol. 1985;108(1):p. 212–8.

    Google Scholar 

  23. Naimark A, Cherniack RM. Compliance of the respiratory system and its components in health and obesity. J Appl Physiol. 1960;15:377–82.

    CAS  PubMed  Google Scholar 

  24. Pelosi P et al. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest. 1996;109(1):144–51.

    CAS  PubMed  Google Scholar 

  25. Zerah F et al. Effects of obesity on respiratory resistance. Chest. 1993;103(5):1470–6.

    CAS  PubMed  Google Scholar 

  26. Sharp JT et al. The total work of breathing in normal and obese men. J Clin Invest. 1964;43:728–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Pankow W et al. Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity. J Appl Physiol. 1985;85(4):1236–43.

    Google Scholar 

  28. Steier J et al. Neural respiratory drive in obesity. Thorax. 2009;64(8):719–25.

    CAS  PubMed  Google Scholar 

  29. Yap JC et al. Effects of posture on respiratory mechanics in obesity. J Appl Physiol. 1985;79(4):p. 1199-–205.

    Google Scholar 

  30. Ferretti A et al. Expiratory flow limitation and orthopnea in massively obese subjects. Chest. 2001;119(5):1401–8.

    CAS  PubMed  Google Scholar 

  31. Lee MY et al. Work of breathing in eucapnic and hypercapnic sleep apnea syndrome. Respiration. 2009;77(2):146–53.

    PubMed  Google Scholar 

  32. Lin CC et al. Oral airway resistance during wakefulness in eucapnic and hypercapnic sleep apnea syndrome. Respir Physiol Neurobiol. 2004;139(2):215–24.

    PubMed  Google Scholar 

  33. Chlif M et al. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir Physiol Neurobiol. 2009;168(3):198–202.

    PubMed  Google Scholar 

  34. Pankow W et al. Influence of noninvasive positive pressure ventilation on inspiratory muscle activity in obese subjects. Eur Respir J. 1997;10(12):2847–52.

    CAS  PubMed  Google Scholar 

  35. Sampson MG, Grassino AE. Load compensation in obese patients during quiet tidal breathing. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):1269–76.

    CAS  PubMed  Google Scholar 

  36. Kessler R et al. The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest. 2001;120(2):369–76.

    CAS  PubMed  Google Scholar 

  37. Berg G et al. The use of health-care resources in obesity-hypoventilation syndrome. Chest. 2001;120(2):377–83.

    CAS  PubMed  Google Scholar 

  38. Borel JC et al. Endothelial dysfunction and specific inflammation in obesity hypoventilation syndrome. PLoS One. 2009;4(8):e6733.

    PubMed Central  PubMed  Google Scholar 

  39. Masa JF et al. Noninvasive positive pressure ventilation and not oxygen may prevent overt ventilatory failure in patients with chest wall diseases. Chest. 1997;112(1):207–13.

    CAS  PubMed  Google Scholar 

  40. Rochester DF, Enson Y. Current concepts in the pathogenesis of the obesity-hypoventilation syndrome. Mechanical and circulatory factors. Am J Med. 1974;57(3):402–20.

    CAS  PubMed  Google Scholar 

  41. Sharp JT, Druz WS, Kondragunta VR. Diaphragmatic responses to body position changes in obese patients with obstructive sleep apnea. Am Rev Respir Dis. 1986;133(1):32–7.

    CAS  PubMed  Google Scholar 

  42. Jonville S, Delpech N, Denjean A. Contribution of respiratory acidosis to diaphragmatic fatigue at exercise. Eur Respir J. 2002;19(6):1079–86.

    CAS  PubMed  Google Scholar 

  43. Monneret D et al. Pleiotropic role of IGF-I in obesity hypoventilation syndrome. Growth Horm IGF Res. 2010;20(2):127–33.

    CAS  PubMed  Google Scholar 

  44. BaHammam A. Acute ventilatory failure complicating obesity hypoventilation: update on a ‘critical care syndrome’. Curr Opin Pulm Med. 2010;16(6):543–51.

    PubMed  Google Scholar 

  45. Sampson MG, Grassino K. Neuromechanical properties in obese patients during carbon dioxide rebreathing. Am J Med. 1983;75(1):81–90.

    CAS  PubMed  Google Scholar 

  46. Lopata M, Onal E. Mass loading, sleep apnea, and the pathogenesis of obesity hypoventilation. Am Rev Respir Dis. 1982;126(4):640–5.

    CAS  PubMed  Google Scholar 

  47. Macavei VM et al. Diagnostic predictors of obesity-hypoventilation syndrome in patients suspected of having sleep disordered breathing. J Clin Sleep Med. 2013;9(9):879–84.

    PubMed Central  PubMed  Google Scholar 

  48. Zwillich CW et al. Decreased hypoxic ventilatory drive in the obesity-hypoventilation syndrome. Am J Med. 1975;59(3):343–8.

    CAS  PubMed  Google Scholar 

  49. Lin CC. Effect of nasal CPAP on ventilatory drive in normocapnic and hypercapnic patients with obstructive sleep apnoea syndrome. Eur Respir J. 1994;7(11):2005–10.

    CAS  PubMed  Google Scholar 

  50. de Lucas-Ramos P et al. Benefits at 1 year of nocturnal intermittent positive pressure ventilation in patients with obesity-hypoventilation syndrome. Respir Med. 2004;98(10):961–7.

    PubMed  Google Scholar 

  51. Berthon-Jones M, Sullivan CE. Time course of change in ventilatory response to CO2 with long-term CPAP therapy for obstructive sleep apnea. Am Rev Respir Dis. 1987;135(1):144–7.

    CAS  PubMed  Google Scholar 

  52. Han F et al. Treatment effects on carbon dioxide retention in patients with obstructive sleep apnea-hypopnea syndrome. Chest. 2001;119(6):1814–9.

    CAS  PubMed  Google Scholar 

  53. Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest. 2006;130(3):827–33.

    PubMed  Google Scholar 

  54. Berger KI et al. Obesity hypoventilation syndrome as a spectrum of respiratory disturbances during sleep. Chest. 2001;120(4):1231–8.

    CAS  PubMed  Google Scholar 

  55. Caro JF et al. Leptin: the tale of an obesity gene. Diabetes. 1996;45(11):1455–62.

    CAS  PubMed  Google Scholar 

  56. Phipps PR et al. Association of serum leptin with hypoventilation in human obesity. Thorax. 2002;57(1):75–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Shimura R et al. Fat accumulation, leptin, and hypercapnia in obstructive sleep apnea-hypopnea syndrome. Chest. 2005;127(2):543–9.

    CAS  PubMed  Google Scholar 

  58. Tatsumi K et al. Sleep oxygen desaturation and circulating leptin in obstructive sleep apnea-hypopnea syndrome. Chest. 2005;127(3):716–21.

    PubMed  Google Scholar 

  59. O'Donnell CP et al. Leptin, obesity, and respiratory function. Respir Physiol. 2000;119(2–3):163–70.

    PubMed  Google Scholar 

  60. Campo A et al. Hyperleptinaemia, respiratory drive and hypercapnic response in obese patients. Eur Respir J. 2007;30(2):223–31.

    CAS  PubMed  Google Scholar 

  61. Tankersley CG et al. Leptin attenuates respiratory complications associated with the obese phenotype. J Appl Physiol. 1985;85(6):p. 2261–9.

    Google Scholar 

  62. Huang K et al. Effects of leptin deficiency on postnatal lung development in mice. J Appl Physiol. 1985;105(1):p. 249–59. 2008.

    Google Scholar 

  63. Basoglu OK, Tasbakan MS. Comparison of clinical characteristics in patients with obesity hypoventilation syndrome and obese obstructive sleep apnea syndrome: a case-control study. Clin Respir J. 2014;8(2):167–74.

    CAS  PubMed  Google Scholar 

  64. Manuel A.R., N. Hart and J.R. Stradling, Is a raised bicarbonate, without hypercapnia, part of the physiological spectrum of obesity-related hypoventilation? Chest, 2014.

  65. Combs D, Shetty S, Parthasarathy S. Advances in positive airway pressure treatment modalities for hypoventilation syndromes. Sleep Med Clin. 2014;9(3):315–25.

    PubMed  Google Scholar 

  66. Carrillo A et al. Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(12):1279–85. Carrillo et al. conducted a study aimed at assessing the efficacy of NIPPV in OHS patients during an episode of AHRF with the hypothesis that they would respond similarly to patients with COPD with a similar presentation. The results of the study suggest that patients with OHS in AHRF respond more favorably to NIPPV with improved outcomes, gas exchange, and mortality than patients with COPD.

  67. Kelly JL et al. Randomized trial of 'intelligent' autotitrating ventilation versus standard pressure support non-invasive ventilation: impact on adherence and physiological outcomes. Respirology. 2014;19(4):596–603.

    PubMed  Google Scholar 

  68. Held M et al. Functional impact of pulmonary hypertension due to hypoventilation and changes under noninvasive ventilation. Eur Respir J. 2014;43(1):156–65.

    PubMed  Google Scholar 

  69. Kawata N et al. Daytime hypercapnia in obstructive sleep apnea syndrome. Chest. 2007;132(6):1832–8.

    PubMed  Google Scholar 

  70. Piper AJ et al. Randomised trial of CPAP vs bilevel support in the treatment of obesity hypoventilation syndrome without severe nocturnal desaturation. Thorax. 2008;63(5):395–401.

    CAS  PubMed  Google Scholar 

  71. Hida W et al. Nasal continuous positive airway pressure improves quality of life in obesity hypoventilation syndrome. Sleep Breath. 2003;7(1):3–12.

    PubMed  Google Scholar 

  72. Banerjee D et al. Obesity hypoventilation syndrome: hypoxemia during continuous positive airway pressure. Chest. 2007;131(6):1678–84.

    PubMed  Google Scholar 

  73. Salord N et al. Continuous positive airway pressure in clinically stable patients with mild-to-moderate obesity hypoventilation syndrome and obstructive sleep apnoea. Respirology. 2013;18(7):1135–42.

    PubMed  Google Scholar 

  74. Janssens JP et al. Changing patterns in long-term noninvasive ventilation: a 7-year prospective study in the Geneva Lake area. Chest. 2003;123(1):67–79.

    PubMed  Google Scholar 

  75. Masa JF et al. The obesity hypoventilation syndrome can be treated with noninvasive mechanical ventilation. Chest. 2001;119(4):1102–7.

    CAS  PubMed  Google Scholar 

  76. Perez de Llano LA et al. Short-term and long-term effects of nasal intermittent positive pressure ventilation in patients with obesity-hypoventilation syndrome. Chest. 2005;128(2):587–94.

    PubMed  Google Scholar 

  77. Priou P et al. Long-term outcome of noninvasive positive pressure ventilation for obesity hypoventilation syndrome. Chest. 2010;138(1):84–90.

    PubMed  Google Scholar 

  78. Chouri-Pontarollo N et al. Impaired objective daytime vigilance in obesity-hypoventilation syndrome: impact of noninvasive ventilation. Chest. 2007;131(1):148–55.

    PubMed  Google Scholar 

  79. Storre JH et al. Average volume-assured pressure support in obesity hypoventilation: a randomized crossover trial. Chest. 2006;130(3):815–21.

    PubMed  Google Scholar 

  80. Redolfi S et al. Long-term non-invasive ventilation increases chemosensitivity and leptin in obesity-hypoventilation syndrome. Respir Med. 2007;101(6):1191–5.

    PubMed  Google Scholar 

  81. Windisch W. Quality of life in home mechanical ventilation study group. Impact of home mechanical ventilation on health-related quality of life. Eur Respir J. 2008;32(5):p. 1328–36.

    Google Scholar 

  82. Borel JC et al. Noninvasive ventilation in mild obesity hypoventilation syndrome: a randomized controlled trial. Chest. 2012;141(3):692–702.

    PubMed  Google Scholar 

  83. Rabec C et al. Ventilator modes and settings during non-invasive ventilation: effects on respiratory events and implications for their identification. Thorax. 2011;66(2):170–8.

    PubMed  Google Scholar 

  84. Berry RB et al. Best clinical practices for the sleep center adjustment of noninvasive positive pressure ventilation (NPPV) in stable chronic alveolar hypoventilation syndromes. J Clin Sleep Med. 2010;6(5):491–509.

    PubMed  Google Scholar 

  85. Contal O et al. Impact of different backup respiratory rates on the efficacy of noninvasive positive pressure ventilation in obesity hypoventilation syndrome: a randomized trial. Chest. 2013;143(1):37–46.

    PubMed  Google Scholar 

  86. Chirinos JA et al. CPAP, weight loss, or both for obstructive sleep apnea. N Engl J Med. 2014;370(24):2265–75.

    PubMed Central  PubMed  Google Scholar 

  87. Ambrogio C et al. Sleep and non-invasive ventilation in patients with chronic respiratory insufficiency. Intensive Care Med. 2009;35(2):306–13.

    PubMed  Google Scholar 

  88. Amato MB et al. Volume-assured pressure support ventilation (VAPSV). A new approach for reducing muscle workload during acute respiratory failure. Chest. 1992;102(4):1225–34.

    CAS  PubMed  Google Scholar 

  89. Murphy PB et al. Volume targeted versus pressure support non-invasive ventilation in patients with super obesity and chronic respiratory failure: a randomised controlled trial. Thorax. 2012;67(8):727–34.

    PubMed  Google Scholar 

  90. Hollier CA et al. Moderate concentrations of supplemental oxygen worsen hypercapnia in obesity hypoventilation syndrome: a randomised crossover study. Thorax. 2014;69(4):346–53.

    PubMed  Google Scholar 

  91. Wijesinghe M et al. The effect of supplemental oxygen on hypercapnia in subjects with obesity-associated hypoventilation: a randomized, crossover, clinical study. Chest. 2011;139(5):1018–24.

    PubMed  Google Scholar 

  92. Mokhlesi B, Tulaimat A, Parthasarathy S. Oxygen for obesity hypoventilation syndrome: a double-edged sword? Chest. 2011;139(5):975–7.

    PubMed  Google Scholar 

  93. Heinemann F et al. Non-invasive positive pressure ventilation improves lung volumes in the obesity hypoventilation syndrome. Respir Med. 2007;101(6):1229–35.

    PubMed  Google Scholar 

  94. Budweiser S et al. Mortality and prognostic factors in patients with obesity-hypoventilation syndrome undergoing noninvasive ventilation. J Intern Med. 2007;261(4):375–83. Budweiser et al. performed a retrospective analysis on patients with OHS on NIPPV to assess the long-term survival and predictors of mortality. In patients who were receiving NIPPV at home, they found significant improvement in arterial blood gases and lung volumes. During the mean observation time of 41.3 months, the all-cause mortality was 12.7 %. After 1, 2, and 3 years, the survival was 97, 92, and 70%.

  95. Hawrylkiewicz I et al. Pulmonary haemodynamics in patients with OSAS or an overlap syndrome. Monaldi Arch Chest Dis. 2004;61(3):148–52.

    CAS  PubMed  Google Scholar 

  96. Chaouat A et al. Sleep-related O2 desaturation and daytime pulmonary haemodynamics in COPD patients with mild hypoxaemia. Eur Respir J. 1997;10(8):1730–5.

    CAS  PubMed  Google Scholar 

  97. Fletcher EC et al. Exercise hemodynamics and gas exchange in patients with chronic obstruction pulmonary disease, sleep desaturation, and a daytime PaO2 above 60 mm Hg. Am Rev Respir Dis. 1989;140(5):1237–45.

    CAS  PubMed  Google Scholar 

  98. Castro-Anon O et al. Haemodynamic effects of non-invasive ventilation in patients with obesity-hypoventilation syndrome. Respirology. 2012;17(8):1269–74.

    PubMed  Google Scholar 

  99. Masa Jimenez JF et al. Nasal intermittent positive pressure ventilation. Analysis of its withdrawal. Chest. 1995;107(2):382–8.

    CAS  PubMed  Google Scholar 

  100. De Miguel Diez J et al. Analysis of withdrawal from noninvasive mechanical ventilation in patients with obesity-hypoventilation syndrome. Medium term results. Arch Bronconeumol. 2003;39(7):292–7.

    PubMed  Google Scholar 

  101. McArdle N et al. Long-term use of CPAP therapy for sleep apnea/hypopnea syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1108–14.

    CAS  PubMed  Google Scholar 

  102. Engleman HM, Wild MR. Improving CPAP use by patients with the sleep apnoea/hypopnoea syndrome (SAHS). Sleep Med Rev. 2003;7(1):81–99.

    PubMed  Google Scholar 

  103. Mokhlesi B et al. Impact of adherence with positive airway pressure therapy on hypercapnia in obstructive sleep apnea. J Clin Sleep Med. 2006;2(1):57–62.

    PubMed Central  PubMed  Google Scholar 

  104. Borel JC et al. Comorbidities and mortality in hypercapnic obese under domiciliary noninvasive ventilation. PLoS One. 2013;8(1):e52006.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Sugerman HJ et al. Gastric surgery for respiratory insufficiency of obesity. Chest. 1986;90(1):81–6.

    CAS  PubMed  Google Scholar 

  106. Thomas PS et al. Respiratory function in the morbidly obese before and after weight loss. Thorax. 1989;44(5):382–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Vaughan RW, Cork RC, Hollander D. The effect of massive weight loss on arterial oxygenation and pulmonary function tests. Anesthesiology. 1981;54(4):325–8.

    CAS  PubMed  Google Scholar 

  108. Weiner P et al. Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory muscle performance. Thorax. 1998;53(1):39–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Boone KA et al. Impact of vertical banded gastroplasty on respiratory insufficiency of severe obesity. Obes Surg. 1996;6(6):454–8.

    PubMed  Google Scholar 

  110. Dixon JB et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;308(11):1142–9.

    CAS  PubMed  Google Scholar 

  111. Gloy VL et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934.

    PubMed Central  PubMed  Google Scholar 

  112. Sjostrom L et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    PubMed  Google Scholar 

  113. Sugerman HJ et al. Long-term effects of gastric surgery for treating respiratory insufficiency of obesity. Am J Clin Nutr. 1992;55(2 Suppl):597S–601.

    CAS  PubMed  Google Scholar 

  114. Piper AJ, Grunstein RR. Current perspectives on the obesity hypoventilation syndrome. Curr Opin Pulm Med. 2007;13(6):490–6.

    PubMed  Google Scholar 

  115. Lumachi F et al. Hypoxemia and hypoventilation syndrome improvement after laparoscopic bariatric surgery in patients with morbid obesity. In Vivo. 2010;24(3):329–31.

    PubMed  Google Scholar 

  116. De Cesare A et al. Early and long-term clinical outcomes of bilio-intestinal diversion in morbidly obese patients. Surg Today. 2014;44(8):1424–33.

    PubMed  Google Scholar 

  117. Marti-Valeri C et al. Improvement of associated respiratory problems in morbidly obese patients after open Roux-en-Y gastric bypass. Obes Surg. 2007;17(8):1102–10.

    CAS  PubMed  Google Scholar 

  118. Ashrafian H et al. Metabolic surgery and obstructive sleep apnoea: the protective effects of bariatric procedures. Thorax. 2012;67(5):442–9.

    PubMed  Google Scholar 

  119. Kim SH et al. Evaluation of patients with sleep apnea after tracheotomy. Arch Otolaryngol Head Neck Surg. 1998;124(9):996–1000.

    CAS  PubMed  Google Scholar 

  120. Sullivan CE et al. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1(8225):862–5.

    CAS  PubMed  Google Scholar 

  121. El Solh AA, Jaafar W. A comparative study of the complications of surgical tracheostomy in morbidly obese critically ill patients. Crit Care. 2007;11(1):R3.

    PubMed Central  PubMed  Google Scholar 

  122. Teppema LJ, Dahan A. Acetazolamide and breathing. Does a clinical dose alter peripheral and central CO(2) sensitivity? Am J Respir Crit Care Med. 1999;160(5 Pt 1):1592–7.

    CAS  PubMed  Google Scholar 

  123. Wagenaar M et al. Comparison of acetazolamide and medroxyprogesterone as respiratory stimulants in hypercapnic patients with COPD. Chest. 2003;123(5):1450–9.

    CAS  PubMed  Google Scholar 

  124. Kiwull-Schone HF, Teppema LJ, Kiwull PJ. Low-dose acetazolamide does affect respiratory muscle function in spontaneously breathing anesthetized rabbits. Am J Respir Crit Care Med. 2001;163(2):478–83.

    CAS  PubMed  Google Scholar 

  125. van de Ven MJ et al. Effects of acetazolamide and furosemide on ventilation and cerebral blood volume in normocapnic and hypercapnic patients with COPD. Chest. 2002;121(2):383–92.

    PubMed  Google Scholar 

  126. Vos PJ et al. Effects of chlormadinone acetate, acetazolamide and oxygen on awake and asleep gas exchange in patients with chronic obstructive pulmonary disease (COPD). Eur Respir J. 1994;7(5):850–5.

    CAS  PubMed  Google Scholar 

  127. Swenson ER, Hughes JM. Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in men. J Appl Physiol. 1985;74(1):p. 230–7. 1993.

    Google Scholar 

  128. Powers MA. Obesity hypoventilation syndrome: bicarbonate concentration and acetazolamide. Respir Care. 2010;55(11):1504–5.

    PubMed  Google Scholar 

  129. Mason M, Welsh EJ, Smith I. Drug therapy for obstructive sleep apnoea in adults. Cochrane Database Syst Rev. 2013;5, CD003002.

    PubMed  Google Scholar 

  130. Parthasarathy S, Subramanian S, Quan SF. A multicenter prospective comparative effectiveness study of the effect of physician certification and center accreditation on patient-centered outcomes in obstructive sleep apnea. J Clin Sleep Med. 2014;10(3):1–7.

Download references

Acknowledgments

Funding support from NIH/NHLBI (5R01HL095748) and PCORI contract (IHS-1306-2505) to S.P. The funding institutions did not have any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Compliance with Ethics Guidelines

Conflict of Interest Statement

Dr. Parthasarathy reports grants from NIH/NHLBI, Patient Centered Outcomes Research Institute, US Department of Defense, grants from NIH (National Cancer Institute) NCI, US Department of Army, Johrei Institute, personal fees from American Academy of Sleep Medicine, Younes Sleep Technologies, Ltd., Niveus Medical Inc., and Philips-Respironics, Inc., outside the submitted work. Dr. Parthasarathy also reports personal fees from the American College of Chest Physicians and non-financial support from the National Center for Sleep Disorders Research of the NIH (NHLBI), USMLEWorld Inc., UpToDate Inc., and Philips-Respironics, Inc., outside the submitted work. Dr. Parthasarathy also has a patent UA 14-018 U.S.S.N. 61/884,654; PTAS 502570970 pending.

Dr. Shetty does not have any conflict of interest to declare.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sairam Parthasarathy.

Additional information

This article is part of the Topical Collection on Sleeping and Breathing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, S., Parthasarathy, S. Obesity hypoventilation syndrome. Curr Pulmonol Rep 4, 42–55 (2015). https://doi.org/10.1007/s13665-015-0108-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-015-0108-6

Keywords

Navigation