Skip to main content

Oxidative Stress and Toxicity in Reproductive Biology and Medicine: Historical Perspectives and Future Horizons in Male Fertility

  • Chapter
  • First Online:
Oxidative Stress and Toxicity in Reproductive Biology and Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1358))

Abstract

Since the discovery by John MacLeod in 1943 that spermatozoa produce small amounts of hydrogen peroxide, a member of the so-called reactive oxygen species (ROS), the importance and functions of these highly reactive oxygen derivatives in physiology and pathology are a subject of numerous studies. It has been shown that they play essential roles, not only in causing oxidative stress if their concentration is excessively high, but also in triggering crucial cellular functions if their concentration is low. On the other hand, antioxidants counterbalance the action of ROS to maintain a fine balance between oxidation and reduction as an excessive amount of antioxidants leads to a condition called reductive stress and is as harmful as oxidative stress. This book “Oxidative Stress and Toxicity in Reproductive Biology and Medicine – A Comprehensive Update on Male Infertility” authoritatively summarizes the current knowledge of various causes of oxidative stress including various andrological conditions and environmental pollution as well as the physiological effects of ROS. Moreover, this book expands into the treatment of oxidative stress with antioxidants and phytomedicine, a rapidly developing area. As a first of its kind, this book also sheds light on the effects of the redox potential during the fertilization process and thus highlights the importance of the correct balance of oxidants and antioxidants, even in the culture medium in assisted reproduction. The editors have brought together an impressive group of renowned experts to share their knowledge on the topic of oxidative stress and its clinical management in andrology and assisted reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasihormozi S, Babapour V, Kouhkan A, Naslji AN, Afraz K, Zolfaghary Z, Shahverdi A. Stress hormone and oxidative stress biomarkers link obesity and diabetes with reduced fertility potential. Cell J. 2019;21:307–13.

    PubMed  PubMed Central  Google Scholar 

  2. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95:503–7.

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal A, Ikemoto I, Loughlin KR. Relationship of sperm parameters with levels of reactive oxygen species in semen specimens. J Urol. 1994;152:107–10.

    Article  CAS  PubMed  Google Scholar 

  4. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;14:28.

    Article  CAS  Google Scholar 

  5. Agarwal A, Aponte-Mellado A, Premkuma BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agarwal A, Leisegang K, Majzoub A, Henkel R, Finelli R, Panner Selvam MK, Tadros N, Parekh N, Ko EY, Cho CL, Arafa M, Alves MG, Oliveira PF, Alvarez JG, Shah R. Utility of antioxidants in the treatment of male infertility: clinical guidelines based on a systematic review and analysis of evidence. World J Mens Health. 2021a;39:233–90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agarwal A, Finelli R, Panner Selvam MK, et al. A global survey of reproductive specialists to determine the clinical utility of oxidative stress testing and antioxidant use in male infertility. World J Mens Health. 2021b;39:e17.

    Google Scholar 

  8. Ahmad G, Agarwal A. Ionizing radiation and male fertility. In: Gunasekaran K, Pandiyan N, editors. Male Infertility. Springer; 2017. p. 185–96.

    Chapter  Google Scholar 

  9. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fert. 1987;81:459–69.

    Article  CAS  Google Scholar 

  10. Aitken RJ, Irvine DS, Wu FC. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol. 1991;164:542–51.

    Article  CAS  PubMed  Google Scholar 

  11. Aitken RJ, Baker MA, Nixon B. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J Androl. 2015;17:633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem. 1989;58:79–110.

    Article  CAS  PubMed  Google Scholar 

  13. Castagne V, Lefevre K, Natero R, Clarke PG, Bedker DA. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience. 1999;93:313–20.

    Article  CAS  PubMed  Google Scholar 

  14. Castleman M. Healing Herbs. New York: Bantam Books; 1995. p. 1–5.

    Google Scholar 

  15. Centola GM, Keller JW, Henzler M, Rubin P. Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J Androl. 1994;15:608–13.

    CAS  PubMed  Google Scholar 

  16. Dada R, Sabharwal P, Sharma A, Henkel R. Use of herbal medicine as primary or supplementary treatments. In: Henkel R, Agarwal A, editors. Herbal Medicine in Andrology – An Evidence-Based Update. London: Elsevier Academic Press; 2020. p. 9–15.

    Google Scholar 

  17. de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radical Biol Med. 1993;14:157–66.

    Article  Google Scholar 

  18. de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(Suppl 1):15–21.

    Article  CAS  PubMed  Google Scholar 

  19. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2:48–54.

    Article  PubMed  Google Scholar 

  20. Delbes G, Hales BF, Robaire B. Effects of the chemotherapy cocktail used to treat testicular cancer on sperm chromatin integrity. J Androl. 2007;28:241–9.

    Article  CAS  PubMed  Google Scholar 

  21. Di Nisio A, Foresta C. Water and soil pollution as determinant of water and food quality/contamination and its impact on male fertility. Reprod Biol Endocrinol. 2019;17:4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Durairajanayagam D. Lifestyle causes of male infertility. Arab J Urol. 2018;16:10–20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Filomeni G, Rotilio G, Ciriolo MR. Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways. Cell Death Differ. 2005;12:1555–63.

    Article  CAS  PubMed  Google Scholar 

  24. Gandhi J, Dagur G, Warren K, Smith NL, Sheynkin YR, Zumbo A, Khan SA. The role of diabetes mellitus in sexual and reproductive health: An overview of pathogenesis, evaluation, and management. Curr Diabetes Rev. 2017;13:573–81.

    CAS  PubMed  Google Scholar 

  25. Gill K, Jakubik J, Kups M, Rosiak-Gill A, Kurzawa R, Kurpisz M, Fraczek M, Piasecka M. The impact of sedentary work on sperm nuclear DNA integrity. Folia Histochem Cytobiol. 2019;57:15–22.

    CAS  PubMed  Google Scholar 

  26. Gupta S, Fedor J, Biedenharn K, Agarwal A. Lifestyle factors and oxidative stress in female infertility: is there an evidence base to support the linkage? Expert Rev Obstet Gynecol. 2013;8:607–24.

    Article  CAS  Google Scholar 

  27. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006;27:1–93.

    Article  CAS  PubMed  Google Scholar 

  28. Gutteridge JMC, Halliwell B. Mini-review: oxidative stress, redox stress or redox success? Biochem Biophys Res Commun. 2018;502:183–6.

    Article  CAS  PubMed  Google Scholar 

  29. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 2nd ed. Oxford: Clarendon Press; 1989.

    Google Scholar 

  30. Hansen JM. Oxidative stress as a mechanism of teratogenesis. Birth Defects Res C Embryo Today. 2006;78:293–307.

    Article  CAS  PubMed  Google Scholar 

  31. Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction. 2002;123:479–86.

    Article  CAS  PubMed  Google Scholar 

  32. Henkel R. Environmental Contamination and Testicular Function. In: Sikka SC, Hellstrom WJG, editors. Handbook of Bioenvironmental Toxicology: Men’s Reproductive & Sexual Health. Elsevier; 2018. p. 191–208.

    Google Scholar 

  33. Henkel R. Infection in Infertility. In: Parekattil SJ, Esteves SC, Agarwal A, editors. Male Infertility: Contemporary Clinical Approaches, Andrology, ART and Antioxidants. 2nd ed. Cham: Springer; 2020. p. 409–24.

    Chapter  Google Scholar 

  34. Henkel R, Sandhu IS, Agarwal A. The excessive use of antioxidant therapy: a possible cause of male infertility? Andrologia. 2019;51:e13162.

    Article  PubMed  CAS  Google Scholar 

  35. Henkel R, Offor U, Fisher D. The role of infections and leukocytes in male infertility. Andrologia. 2020 Jul 21;e13743. doi: https://doi.org/10.1111/and.13743. Online ahead of print.

  36. Howell SJ, Shalet SM. Testicular function following chemotherapy. Hum Reprod Update. 2001;7:363–9.

    Article  CAS  PubMed  Google Scholar 

  37. Jensen CFS, Østergren P, Dupree JM, Ohl DA, Sønksen J, Fode M. Varicocele and male infertility. Nat Rev Urol. 2017;14:523–33.

    Article  PubMed  Google Scholar 

  38. Jung A, Schuppe HC. Influence of genital heat stress on semen quality in humans. Andrologia. 2007;39:203–15.

    Article  CAS  PubMed  Google Scholar 

  39. Kuchakulla M, Soni Y, Patel P, Parekh N, Ramasamy R. A systematic review and evidence-based analysis of ingredients in popular male fertility supplements. Urology. 2020;136:133–41.

    Article  PubMed  Google Scholar 

  40. Lao M, Honig SC. Male infertility and subsequent risk of cancer development. J Men’s Health. 2015;11:19–28.

    Google Scholar 

  41. Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1:63–72.

    Article  CAS  PubMed  Google Scholar 

  42. Leisegang K, Henkel R, Agarwal A. Obesity and metabolic syndrome associated systemic inflammation and the impact on the male reproductive system. Am J Reprod Immunol. 2019;82:e13178.

    Article  CAS  PubMed  Google Scholar 

  43. Lipinski B. Evidence in support of a concept of reductive stress. Br J Nutr. 2002;87:93–4.

    Article  CAS  PubMed  Google Scholar 

  44. Luti S, Fiaschi T, Magherini F, Modesti PA, Piomboni P, Semplici B, Morgante G, Amoresano A, Illiano A, Pinto G, Modesti A, Gamberi T. Follicular microenvironment: Oxidative stress and adiponectin correlated with steroids hormones in women undergoing in vitro fertilization. Mol Reprod Dev. 2021;88:175–84.

    Article  CAS  PubMed  Google Scholar 

  45. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol. 1943;138:512–8.

    Article  CAS  Google Scholar 

  46. Mathur PP, Huang L, Kashou A, Vaithinathan S, Agarwal A. Environmental toxicants and testicular apoptosis. Open Reprod Sci J. 2011;3:114–24.

    Article  CAS  Google Scholar 

  47. Mendiola J, Torres-Cantero AM, Agarwal A. Lifestyle factors and male infertility: an evidence-based review. Arch Med Sci. 2009;5(1A):S3–S12.

    CAS  Google Scholar 

  48. Minguez-Alarcon L, Gaskins AJ, Chiu YH, Messerlian C, Williams PL, Ford JB, Souter I, Hauser R, Chavarro JE. Type of underwear worn and markers of testicular function among men attending a fertility center. Hum Reprod. 2018;33:1749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Flaherty C. Peroxiredoxins: hidden players in the antioxidant defence of human spermatozoa. Basic Clin Androl. 2014;24:4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. O’Flaherty CM, Beorlegui NB, Beconi MT. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology. 1999;52:289–301.

    Article  PubMed  Google Scholar 

  51. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.

    Article  CAS  PubMed  Google Scholar 

  52. Sies H. Oxidative Stress. London: Academic Press; 1985. p. 1–507.

    Book  Google Scholar 

  53. Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem. 2014;289:8735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Skoracka K, Eder P, Lykowska-Szuber L, Dobrowolska A, Krela-Kazmierczak I. Diet and nutritional factors in male (in)fertility-underestimated factors. J Clin Med. 2020;9:1400.

    Article  CAS  PubMed Central  Google Scholar 

  55. Song GS, Seo JT. Changes in the scrotal temperature of subjects in a sedentary posture over a heated floor. Int J Androl. 2006;29:446–57.

    Article  PubMed  Google Scholar 

  56. Toboła-Wróbel K, Pietryga M, Dydowicz P, Napierała M, Brązert J, Florek E. Association of oxidative stress on pregnancy. Oxid Med Cell Longev. 2020;2020:6398520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tvrda E, Agarwal A, Alkuhaimi N. Male reproductive cancers and infertility: a mutual relationship. Int J Mol Sci. 2015;16:7230–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ufer C, Wang CC. The roles of glutathione peroxidases during embryo development. Front Mol Neurosci. 2011;4:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal. 2010;13:833–75.

    Article  CAS  PubMed  Google Scholar 

  60. Varghese AC, Ly KD, Corbin C, Mendiola J, Agarwal A. Oocyte developmental competence and embryo development: impact of lifestyle and environmental risk factors. Reprod Biomed Online. 2011;22:410–20.

    Article  PubMed  Google Scholar 

  61. Wang CC, Rogers MS. Oxidative stress and fetal hypoxia. In: Laszlo G, editor. Reactive Oxygen Species and Disease. 282: Research Signpost, 257; 2007.

    Google Scholar 

  62. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28:684–703.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Henkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henkel, R. (2022). Oxidative Stress and Toxicity in Reproductive Biology and Medicine: Historical Perspectives and Future Horizons in Male Fertility. In: Kesari, K.K., Roychoudhury, S. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-89340-8_1

Download citation

Publish with us

Policies and ethics