Skip to main content

Advertisement

Log in

Calculation of stress intensity factors for functionally graded materials by using the weight functions derived by the virtual crack extension technique

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The weight function method provides a powerful approach for calculating the stress intensity factors for a homogeneous cracked body subjected to mechanical loadings. In this paper, the basic equations of weight function method for mode I and mixed mode crack problems in a two-dimensional functionally graded crack system are derived based on the Betti’s reciprocal theorem. The weight functions derived by the virtual crack extension technique are further used to calculate the stress intensity factors of functionally graded materials (FGMs). The practicability and accuracy of this proposed method has been confirmed by the comparison with theoretical or numerical solutions available in the literatures. On account that the repeated extractions of the distributions of normal stress and shear stress in the uncracked component along the prospective crack line under different loadings can be avoided using the method presented in this paper, this method can be potentially used for optimal design for FGMs under multiple-load cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abali, B.E., Völlmecke, C., Woodward, B., Kashtalyan, M., Guz, I., Müller, W.H.: Numerical modeling of functionally graded materials using a variational formulation. Continuum Mech. Therm. 24, 377–390 (2012)

    Article  MATH  Google Scholar 

  • Abbasnejad, B., Rezazadeh, G.: Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure. Int. J. Mech. Mater. Des. 8, 381–392 (2012)

    Article  Google Scholar 

  • Anlas, G., Santare, M.H., Lambros, J.: Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Fract. 104, 131–143 (2000)

    Article  Google Scholar 

  • Ayhan, A.O.: Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements. Int. J. Solids Struct. 46, 796–810 (2009)

    Article  MATH  Google Scholar 

  • Bayat, M., Sahari, B.B., Saleem, M., Hamouda, A.M.S., Reddy, N.G.: Thermo elastic analysis of functionally graded rotating disks with temperature-dependent material properties: uniform and variable thickness. Int. J. Mech. Mater. Des. 5, 263–279 (2009)

    Article  Google Scholar 

  • Bayesteh, H., Mohammadi, S.: XFEM fracture analysis of orthotropic functionally graded materials. Compos. Part B 44, 8–25 (2013)

    Article  Google Scholar 

  • Bueckner, H.F.: A novel principle for the computation of stress intensity factors. Z. Angew Math. Mech. 50, 529–546 (1970)

    MATH  MathSciNet  Google Scholar 

  • Cheng, Z.Q., Meguid, S.A., Zhong, Z.: Thermo-mechanical behavior of a viscoelastic FGMs coating containing an interface crack. Int. J. Fract. 164, 15–29 (2010)

    Article  MATH  Google Scholar 

  • Chen, J., Wu, L.Z., Du, S.Y.: A modified J integral for functionally graded materials. Mech. Res. Commun. 27, 301–306 (2000)

    Article  MATH  Google Scholar 

  • Cinefra, M., Carrera, E., Della Croce, C., Chinosi, C.: Refined shell elements for the analysis of functionally graded structures. Compos. Struct. 94, 415–422 (2012)

    Article  Google Scholar 

  • Dag, S., Arman, E.E.: Computation of thermal fracture parameters for orthotropic functionally graded materials using J(K)-integral. Int. J. Solids Struct. 47, 3480–3488 (2010)

    Article  MATH  Google Scholar 

  • Darabseh, T., Yilmaz, N., Bataineh, M.: Transient thermoelasticity analysis of functionally graded thick hollow cylinder based on Green–Lindsay model. Int. J. Mech. Mater. Des. 8, 247–255 (2012)

    Article  Google Scholar 

  • Davar, A., Khalili, S.M.R., Fard, K.M.: Dynamic response of functionally graded circular cylindrical shells subjected to radial impulse load. Int. J. Mech. Mater. Des. 9, 65–81 (2013)

    Article  Google Scholar 

  • Delale, F., Erdogan, F.: The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50, 609–614 (1983)

    Article  MATH  Google Scholar 

  • Desai, P., Kant, T.: A mixed semi analytical solution for functionally graded (FG) finite length cylinders of orthotropic materials subjected to thermal load. Int. J. Mech. Mater. Des. 8, 89–100 (2012)

    Article  Google Scholar 

  • Ding, S.H., Li, X.: Mode-I crack problem for functionally graded layered structures. Int. J. Fract. 168, 209–226 (2011)

    Article  Google Scholar 

  • Dolbow, J.E., Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Struct. 39, 2557–2574 (2002)

    Article  MATH  Google Scholar 

  • Eischen, J.W.: Fracture of nonhomogeneous materials. Int. J. Fract. 34, 3–22 (1987)

    Google Scholar 

  • Erdogan, F., Wu, B.H.: The surface crack problem for a plate with functionally graded properties. J. Appl. Mech. 64, 449–456 (1997)

    Article  MATH  Google Scholar 

  • Fett, T., Munz, D.: A weight function for cracks in gradient materials. Int. J. Fract. 84, L3–L7 (1997)

    Google Scholar 

  • Fett, T., Munz, D., Yang, Y.Y.: Direct adjustment procedure for weight functions of graded materials. Fatigue Fract. Eng. Mater. Struct. 23, 191–198 (2000)

    Article  Google Scholar 

  • Gibson, R.E.: Some results concerning displacements and stresses in a nonhomogeneous elastic half space. Geotechnique 17, 58–67 (1967)

    Article  Google Scholar 

  • Guo, L.C., Noda, N.: An analytical method for thermal stresses of a functionally graded material cylindrical shell under a thermal shock. Acta Mech. 214, 71–78 (2010)

    Article  MATH  Google Scholar 

  • Guo, L.C., Wang, Z.H., Zhang, L.: A fracture mechanics problem of a functionally graded layered structure with an arbitrarily oriented crack crossing the interface. Mech. Mater. 46, 69–82 (2012)

    Article  MathSciNet  Google Scholar 

  • Gu, P., Asaro, R.J.: Cracks in functionally graded materials. Int. J. Solids Struct. 34, 1–17 (1997)

    Article  MATH  Google Scholar 

  • Gu, P., Dao, M., Asaro, R.J.: A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral. J. Appl. Mech. 66, 101–108 (1999)

    Article  Google Scholar 

  • Hedia, H.S., Shabara, M.A.N., El-Midany, T.T., Fouda, N.: A method of material optimization of cementless stem through functionally graded material. Int. J. Mech. Mater. Des. 1, 329–346 (2004)

    Article  Google Scholar 

  • Hellen, T.H.: On the method of virtual crack extension. Int. J. Numer. Methods Eng. 9, 187–207 (1975)

    Article  MATH  Google Scholar 

  • Jin, Z.-H., Batra, R.C.: Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids 44, 1221–1235 (1996)

    Article  Google Scholar 

  • Jin, Z.-H., Noda, N.: Crack-tip singular fields in non-homogeneous materials. J. Appl. Mech. 61, 738–740 (1994)

    Article  MATH  Google Scholar 

  • Kiani, Y., Rezaei, M., Taheri, S., Eslami, M.R.: Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams. Int. J. Mech. Mater. Des. 7, 185–197 (2011)

    Article  Google Scholar 

  • Kim, J.H., Paulino, G.H.: Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int. J. Numer. Methods Eng. 53, 1903–1935 (2002)

    Article  MATH  Google Scholar 

  • Konda, N., Erdogan, F.: The mixed mode crack problem in a nonhomogeneous elastic medium. Eng. Fract. Mech. 47, 533–545 (1994)

    Article  Google Scholar 

  • Liang, J., Zhou, Z.G.: The effect of the lattice parameter of functionally graded materials on the dynamic stress field near crack tips. Int. J. Mech. Mater. Des. 2, 199–206 (2005)

    Article  Google Scholar 

  • Liew, K.M., He, X.Q., Meguid, S.A.: Optimal shape control of functionally graded smart plates using genetic algorithms. Comput. Mech. 33, 245–253 (2004)

    Article  MATH  Google Scholar 

  • Ma, L., Abdelmoula, R., Wu, L.Z.: Mode III crack problems in a functionally graded magneto-electro-elastic strip. Int. J. Solids Struct. 44, 5518–5537 (2007)

    Article  MATH  Google Scholar 

  • Ma, L., Wu, L.Z.: Mode III crack problem in a functionally graded coating-homogeneous substrate structure. P. I. Mech. Eng. C-J Mech. 222, 329–337 (2008)

    Article  Google Scholar 

  • Meguid, S.A., Wang, X.D., Jiang, L.Y.: On the dynamic propagation of a finite crack in functionally graded materials. Eng. Fract. Mech. 69, 1753–1768 (2002)

    Article  Google Scholar 

  • Moghaddam, A.S., Alfano, M., Ghajar, R.: Determining the mixed mode stress intensity factors of surface cracks in functionally graded hollow cylinders. Mater. Des. 43, 475–484 (2013)

    Article  Google Scholar 

  • Mollarazi, H.R., Foroutan, M., Moradi-Dastjerdi, R.: Analysis of free vibration of functionally graded material (FGM) cylinders by a meshless method. J. Compos. Mater. 46, 507–515 (2012)

    Article  Google Scholar 

  • Nezhad, Y.R., Asemi, K., Akhlaghi, M.: Transient solution of temperature field in functionally graded hollow cylinder with finite length using multi layered approach. Int. J. Mech. Mater. Des. 7, 71–82 (2011)

    Article  Google Scholar 

  • Nguyen-Xuan, H., Tran Loc, V., Thai, C.H., Nguyen-Thoi, T.: Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin Walled Struct. 54, 1–18 (2012)

    Article  Google Scholar 

  • Panda, S., Sopan, G.G.: Nonlinear analysis of smart functionally graded annular sector plates using cylindrically orthotropic piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 9, 35–53 (2013)

    Article  Google Scholar 

  • Parks, D.M.: A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int. J. Fract. 10, 487–502 (1974)

    Article  Google Scholar 

  • Parks, D.M., Kamenetzky, E.M.: Weight functions from virtual crack extension. Int. J. Numer. Methods Eng. 14, 1693–1706 (1979)

    Article  MATH  Google Scholar 

  • Pendhari, S.S., Kant, T., Desai, Y.M., Subbaiah, C.V.: Static solutions for functionally graded simply supported plates. Int. J. Mech. Mater. Des. 8, 51–69 (2012)

    Article  Google Scholar 

  • Rao, B.N., Rahman, S.: Mesh-free analysis of cracks in isotropic functionally graded materials. Eng. Fract. Mech. 70, 1–27 (2003)

    Article  Google Scholar 

  • Rastgo, A., Shafie, H., Allahverdizadeh, A.: Instability of curved beams made of functionally graded material under thermal loading. Int. J. Mech. Mater. Des. 2, 117–128 (2005)

    Article  Google Scholar 

  • Safari-Kahnaki, A., Hosseini, S.M., Tahani, M.: Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method. Int. J. Mech. Mater. Des. 7, 167–184 (2011)

    Article  Google Scholar 

  • Sham, T.L.: A unified finite element method for determining weight functions in two and three dimensions. Int. J. Solids Struct. 23, 1357–1372 (1987)

    Article  MATH  Google Scholar 

  • Singh, I.V., Mishra, B.K., Bhattacharya, S.: XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int. J. Mech. Mater. Des. 7, 199–218 (2011)

    Article  Google Scholar 

  • Taghvaeipour, A., Bonakdar, M., Ahmadian, M.T.: Application of a new cylindrical element formulation in finite element structural analysis of FGM hollow cylinders. Finite Elem. Anal. Des. 50, 1–7 (2012)

    Article  Google Scholar 

  • Vanderglas, M.L.: A stiffness derivative finite element technique for determination of influence functions. Int. J. Fract. 14, R291–R294 (1978)

    Google Scholar 

  • Walters, M.C., Paulino, G.H., Dodds Jr, R.H.: Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading. Int. J. Solids Struct. 41, 1081–1118 (2004)

    Article  MATH  Google Scholar 

  • Woo, J., Meguid, S.A.: Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 38, 7409–7421 (2001)

    Article  MATH  Google Scholar 

  • Woo, J., Meguid, S.A., Liew, K.M.: Thermomechanical postbuckling analysis of functionally graded plates and shallow cylindrical shells. Acta Mech. 165, 99–115 (2003)

    Article  MATH  Google Scholar 

  • Woo, J., Meguid, S.A., Stranart, J.C., Liew, K.M.: Thermomechanical postbucklinganalysis of moderately thick functionally graded plates and shallow shells. Int. J. Mech. Sci. 47, 1147–1171 (2005)

    Article  MATH  Google Scholar 

  • Yu, H.J., Wu, L.Z., Guo, L.C.: Investigation of mixed-mode stress intensity factors for nonhomogeneous materials using an interaction integral method. Int. J. Solids Struct. 46, 3710–3724 (2009)

    Article  MATH  Google Scholar 

  • Zhou, Z.G., Zhang, P.W., Wu, L.Z.: Investigation of the behavior of a mode-I crack in functionally graded materials by non-local theory. Int. J. Eng. Sci. 45, 242–257 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11372280, 51275471 and 11002126 and by Zhejiang Provincial Natural Science Foundation of China under Grant Nos. Y6100425 and Y1100108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Wu, H., Li, L. et al. Calculation of stress intensity factors for functionally graded materials by using the weight functions derived by the virtual crack extension technique. Int J Mech Mater Des 10, 65–77 (2014). https://doi.org/10.1007/s10999-013-9231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-013-9231-0

Keywords

Navigation