Skip to main content
Log in

A mixed semi analytical solution for functionally graded (FG) finite length cylinders of orthotropic materials subjected to thermal load

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A simplified and accurate analytical cum numerical model is presented here to investigate the behavior of functionally graded (FG) cylinders of finite length subjected to thermal load. A diaphragm supported FG cylinder under symmetric thermal load which is considered as a two dimensional (2D) plane strain problem of thermoelasticity in (r, z) direction. The boundary conditions are satisfied exactly in axial direction (z) by taking an analytical expression in terms of Fourier series expansion. Fundamental (basic) dependent variables are chosen in the radial coordinate of the cylinder. First order simultaneous ordinary differential equations are obtained as mathematical model which are integrated through an effective numerical integration technique by first transforming the boundary value problem into a set of initial value problems. For FG cylinders, the material properties have power law dependence in the radial coordinate. Effect of non homogeneity parameters and orthotropy of the materials on the stresses and displacements of FG cylinder are studied. The numerical results obtained are also first validated with existing literature for their accuracy. Stresses and displacements in axial and radial directions in cylinders having various l/r i and r o/r i ratios parameter are presented for future reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

r, θ, z :

Cylindrical coordinates

u, v, w :

Displacement components

σ r , σ θ , σ z :

Normal stress components on planes normal to r, θ, and z axis

τ zr :

Shearing stress component in cylindrical coordinates

ε r , εθ, ε z :

Unit elongations (normal strain) components in cylindrical coordinates

γ zr :

Shearing strain component in cylindrical coordinates

C ij :

Material constants for orthotropic materials

α i :

Coefficient of thermal expansion per degree centigrade for orthotropic materials

T :

Temperature rise at any point in a cylinder

\( \nu \) :

Poisson’s ratio

r i :

Inner radius of the cylinder

r o :

Outer radius of the cylinder

l :

Length of the cylinder

T m :

Initial reference temperature

\( \bar{u},\bar{w} \) :

Nondimensionalized displacement components

\( \overline{{\sigma_{r} }} ,\overline{{\sigma_{\theta } }} ,\overline{{\sigma_{z} }} \) :

Nondimensionalized normal stress components

\( \overline{{\tau_{rz} }} \) :

Nondimensionalized shearing stress component in cylindrical coordinates

\( \overline{r} \) :

Nondimensionalized radius

R :

Mean radius (r o/r i)/2

References

  • Afshar, R., Bayat, M., Lalwani, R.K., Yau, Y.H.: Elastic behavior of glass-like functionally graded infinite hollow cylinder under hydrostatic loads using finite element method. Mater. Des. 32, 781–787 (2011)

    Article  Google Scholar 

  • Chen, Y.Z., Lin, X.Y.: An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials. Comput. Mater. Sci. 48, 640–647 (2010)

    Article  Google Scholar 

  • Chen, W.Q., Ye, G.R., Cai, J.B.: Thermoelastic stresses in a uniformly heated functionally graded isotropic hollow cylinder. J. Zhejiang Univ. Sci. 3(1), 1–5 (2002)

    Article  MATH  Google Scholar 

  • Desai, P., Kant, T.: Ton accurate stress determination in laminated finite length cylinders subjected to thermoelastic load. Int. J. Mech. Solids 6(1), 7–26 (2011)

    Google Scholar 

  • Gill, S.: A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proc. Camb. Philos. Soc. 47(Part 1), 96–108 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg, J.E. Setlur, A.V., Alspaugh, D.W.: Computer analysis of non-circular cylindrical shells. In: Proceedings of the IASS Symposium on Shell Structures in Engineering Practice, Budapest, Hungary (1965)

  • Horgan, C.O., Chan, A.M.: The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. J. Elast. 55, 43–59 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari, M., Sohrabpour, S., Eslami, M.R.: Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Press. Vessels Pip. 79, 493–497 (2002)

    Article  Google Scholar 

  • Kant, T., Ramesh, C.K.: Numerical integration of linear boundary value problems in solid mechanics by segmentation method. Int. J. Numer. Methods Eng. 17, 1233–1256 (1981)

    Article  MATH  Google Scholar 

  • Koizumi, M.: FGM activities in Japan. Compos. Part B 28B, 1–4 (1997)

    Article  Google Scholar 

  • Kraus, H.: Thin Elastic Shells. Wiley, New York (1967)

    MATH  Google Scholar 

  • Liew, K.M., Kitipornchai, S., Zhang, X.Z., Lim, C.W.: Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders. Int. J. Solids Struct. 40, 2355–2380 (2003)

    Article  MATH  Google Scholar 

  • Peng, X.L., Li, X.F.: Thermoelastic analysis of a cylindrical vessel of functionally graded materials. Int. J. Press. Vessels Pip. 87, 203–210 (2010)

    Article  Google Scholar 

  • Shariyat, M., Nikkhah, M., Kazemi, R.: Exact and numerical elastodynamic solutions for thick-walled functionally graded cylinders subjected to pressure shocks. Int. J. Press. Vessels Pip. 88, 75–87 (2011)

    Article  Google Scholar 

  • Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  • Tutuncu, K., Ozturk, M.: Exact solutions for stresses in functionally graded pressure vessels. Compos. Part B 32, 683–686 (2001)

    Article  Google Scholar 

  • Yas, M.H., Sobhani Aragh, B.: Three-dimensional analysis for thermoelastic response of functionally graded fiber reinforced cylindrical panel. Compos. Struct. 92, 2391–2399 (2010)

    Article  Google Scholar 

  • Ye, G.R., Chen, W.Q., Cai, J.B.: A uniformly heated functionally graded cylindrical shell with transverse isotropy. Mech. Res. Commun. 28(5), 535–542 (2001)

    Article  MATH  Google Scholar 

  • Wu, C.-P., Tsai, T.-C.: Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method. Appl. Math. Model. (2011). doi:10.1016/j.apm.2011.07.077

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Desai.

Appendix: 1D formulation for orthotropic cylinder under thermal loading

Appendix: 1D formulation for orthotropic cylinder under thermal loading

$$ \frac{{{\text{d}}\sigma_{r} }}{{{\text{d}}r}} + \frac{1}{r}\left( {\sigma_{r} - \sigma_{\theta } } \right) = 0,\quad \varepsilon_{r} = \frac{\partial u}{\partial r} ,\quad \varepsilon_{\theta } = \frac{u}{r}, $$
(9)
$$ \begin{array}{l} {\sigma_{r} = C_{11} \left( {\varepsilon_{r} - \alpha_{r} T} \right) + C_{12} \left( {\varepsilon_{\theta } - \alpha_{\theta } T} \right)} \\ {\sigma_{\theta } = C_{12} \left( {\varepsilon_{r} - \alpha_{r} T} \right) + C_{22} \left( {\varepsilon_{\theta } - \alpha_{\theta } T} \right)} \\ \end{array} ,\begin{array}{l} {\sigma_{r} = C_{11} \frac{{{\text{d}}u}}{{{\text{d}}r}} - C_{11} \alpha_{r} T + C_{12} \frac{u}{r} - C_{12} \alpha_{\theta } T} \\ {\sigma_{\theta } = C_{21} \frac{{{\text{d}}u}}{{{\text{d}}r}} - C_{21} \alpha_{r} T + C_{22} \frac{u}{r} - C_{22} \alpha_{\theta } T} \\ \end{array} , $$
$$ \begin{aligned} & \frac{{{\text{d}}u}}{{{\text{d}}r}} = \frac{{\sigma_{r} }}{{C_{11} }} + \alpha_{r} T - \frac{{C_{12} }}{{C_{11} }}\frac{u}{r} + \frac{{C_{12} }}{{C_{11} }}\alpha_{\theta } T, \\ & \frac{{{\text{d}}\sigma_{r} }}{{{\text{d}}r}} = \frac{{\sigma_{r} }}{r}\left( {\frac{{C_{21} }}{{C_{11} }} - 1} \right) + \frac{u}{{r^{2} }}\left( {C_{22} - \frac{{C_{21} C_{12} }}{{C_{11} }}} \right) + \frac{{\alpha_{\theta } T}}{r}\left( {\frac{{C_{21} C_{12} }}{{C_{11} }} - C_{22} } \right) \hfill \\ \end{aligned} $$
(10)

where,

$$ \begin{aligned} & \nu_{r\theta } = \frac{{\nu_{\theta r} }}{{E_{\theta } }}E_{r} ,\quad C_{11} = \frac{{E_{r} }}{{\left( {1 - \upsilon_{r\theta } \upsilon_{\theta r} } \right)}},\quad C_{12} = \frac{{\upsilon_{r\theta } E_{\theta } }}{{\left( {1 - \upsilon_{r\theta } \upsilon_{\theta r} } \right)}},\quad C_{22} = \frac{{E_{\theta } }}{{\left( {1 - \upsilon_{r\theta } \upsilon_{\theta r} } \right)}},\quad C_{21} = C_{12} , \\ & C_{ij} = C_{ij}^{0} \xi^{n} ,\quad \alpha_{i} = \alpha_{i}^{0} \xi^{n} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, P., Kant, T. A mixed semi analytical solution for functionally graded (FG) finite length cylinders of orthotropic materials subjected to thermal load. Int J Mech Mater Des 8, 89–100 (2012). https://doi.org/10.1007/s10999-012-9179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9179-5

Keywords

Navigation