Skip to main content
Log in

Static solutions for functionally graded simply supported plates

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this article mixed semi-analytical and analytical solutions are presented for a rectangular plate made of functionally graded (FG) material. All edges of a plate are under simply supported (diaphragm) end conditions and general stress boundary conditions can be applied on both top and bottom surface of a plate during solution. A mixed semi-analytical model consists in defining a two-point boundary value problem governed by a set of first-order ordinary differential equations in the plate thickness direction. Analytical solutions based on shear-normal deformation theories are also established to show the accuracy, simplicity and effectiveness of mixed semi-analytical model. The FG material is assumed to be exponential in the thickness direction and Poisson’s ratio is assumed to be constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, T.A.: A 3D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Compos. Struct. 60, 265–274 (2003)

    Article  Google Scholar 

  • Bodaghi, M., Saidi, A.R.: Levy-type solution for bending analysis of thick functionally graded rectangular plates based on higher-order shear deformation plate theory. Appl. Math. Model. 34, 3659–3670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Chakraborty, A., Gopalakrishnan, S.: A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 40, 2421–2448 (2003)

    Article  MATH  Google Scholar 

  • GhannadPour, S.A.M., Alinia, M.M.: Large deflection behaviour of functionally graded plates under pressure loads. Compos. Struct. 75, 67–71 (2006)

    Article  Google Scholar 

  • Han, F., Pan, E., Roy, A.K., Yue, Z.Q.: Response of piezoelectric, transversely isotropic, functionally graded and multilayered half spaces to uniform circular surface loadings. Comput. Model. Eng. Sci. 14(1), 15–30 (2006)

    Google Scholar 

  • Kang, Y.A., Li, X.F.: Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force. Int. J. Non Linear Mech. 44, 696–703 (2009)

    Article  Google Scholar 

  • Kant, T., Ramesh, C.K.: Numerical integration of linear boundary value problems in solid mechanics by segmentation method. Int. J. Num. Meth. Eng. 17, 1233–1256 (1981)

    Article  MATH  Google Scholar 

  • Kant, T., Gupta, A.V., Pendhari, S.S., Desai, Y.M.: Elasticity solution for cross-ply composite and sandwich laminates. Compos. Struct. 83, 13–24 (2008)

    Article  Google Scholar 

  • Kantrovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis, 3rd edn. Noordhoff, Groningen (1958)

    Google Scholar 

  • Kashtalyan, M.: Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur. J. Mech. 23, 853–864 (2004)

    Article  MATH  Google Scholar 

  • Khabbaz, R.S., Manshadi, B.D., Abedian, A.: Nonlinear analysis of FGM plates under pressure loads using the higher-order shear deformation theories. Compos. Struct. 89, 333–344 (2009)

    Article  Google Scholar 

  • Ma, L.S., Wang, T.J.: Relationship between axisymmetric bending and buckling solution of FGM circular plates based on third-order plate theory and classical plate theory. Int. J. Solid Struct. 41, 85–101 (2004)

    Article  MATH  Google Scholar 

  • Matsunaga, H.: Stress analysis of functionally graded plates subjected to thermal and mechanical loading. Compos. Struct. 87, 344–357 (2009)

    Article  Google Scholar 

  • Nguyen, T.K., Sab, K., Bonnet, G.: First-order shear deformation plate models for functionally graded materials. Compos. Mater. 83, 25–36 (2008)

    Google Scholar 

  • Pendhari, S.S., Kant, T., Desai, Y.M., Subbaiah, C.V.: On deformation of functionally graded narrow beams under transverse loads. Int. J. Mech. Mater. Des. 6, 269–282 (2010)

    Article  Google Scholar 

  • Praveen, G.N., Reddy, J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35(33), 4457–4476 (1998)

    Article  MATH  Google Scholar 

  • Reddy, J.N.: Analysis of functionally graded plates. Int. J. Num. Meth. Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  • Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21, 593–626 (1998)

    Article  Google Scholar 

  • Sankar, B.V.: An elasticity solution for functionally graded beam. Compos. Sci. Tech. 61, 689–696 (2001)

    Article  Google Scholar 

  • Sankar, B.V., Tzeng, J.T.: Thermal stresses in functionally graded beams. AIAA J. 410(6), 1228–1232 (2002)

    Article  Google Scholar 

  • Shen, H.S.: Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. Int. J. Mech. Sci. 44(3), 561–584 (2002)

    Article  MATH  Google Scholar 

  • Tanigawa, Y.: Some basic thermoelastic problems for non-homogeneous structural materials. Appl. Mech. Rev. 48(6), 287–300 (1995)

    Article  Google Scholar 

  • Vel, S.S., Batra, R.C.: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 40(7), 1421–1433 (2002)

    Article  Google Scholar 

  • Woo, J., Meguid, S.A.: Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 38(42–43), 7409–7421 (2001)

    Article  MATH  Google Scholar 

  • Woo, J., Meguid, S.A., Stranart, J.C., Liew, K.M.: Thermo-mechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. Int. J. Mech. Sci. 47, 1147–1171 (2005)

    Article  MATH  Google Scholar 

  • Yang, J., Shen, H.S.: Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions. Compos. B 34(2), 103–115 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep S. Pendhari.

Appendix

Appendix

The coefficients of matrix [A] are,

$$ \begin{aligned} &A_{1,1} = \frac{{\bar{E}_{h} - \bar{E}_{o} }}{\lambda }\,\quad A_{1,2} = \frac{{h\bar{E}_{h} - A_{1,1} }}{\lambda }\quad A_{1,3} = \frac{{h^{2} \bar{E}_{h} - 2A_{1,2} }}{\lambda }\quad A_{1,4} = \frac{{h^{3} \bar{E}_{h} - 3A_{1,3} }}{\lambda } \hfill \\ &A_{1,5} = \upsilon A_{1,1} \quad A_{1,6} = \upsilon A_{1,2} \quad A_{1,7} = \upsilon A_{1,3} \quad A_{1,8} = \upsilon A_{1,4} \quad A_{1,9} = A_{1,5} \hfill \\ &A_{1,10} = A_{1,6} \quad A_{1,11} = A_{1,7} \hfill \\ \end{aligned} $$
$$ \begin{aligned} &A_{2,2} = A_{1,3} \quad A_{2,3} = A_{1,4} \quad A_{2,4} = \frac{{h^{4} \bar{E}_{h} - 4A_{2,3} }}{\lambda }\quad A_{2,5} = \upsilon A_{1,2} \quad A_{2,6} = \upsilon A_{2,2} \hfill \\ &A_{2,7} = \upsilon A_{2,3} \quad A_{2,8} = \upsilon A_{2,4} \quad A_{2,9} = A_{2,5} \quad A_{2,10} = A_{2,6} \quad A_{2,11} = A_{2,7} \hfill \\ \end{aligned} $$
$$ \begin{aligned} &A_{3,3} = A_{2,4} \quad A_{3,4} = \frac{{h^{5} \bar{E}_{h} - 5A_{3,3} }}{\lambda }\quad A_{3,5} = \upsilon A_{1,3} \quad A_{3,6} = \upsilon A_{2,3} \quad A_{3,7} = \upsilon A_{3,3} \hfill \\ &A_{3,8} = \upsilon A_{3,4} \quad A_{3,9} = A_{3,5} \quad A_{3,10} = A_{3,6} \quad A_{3,11} = A_{3,7} \hfill \\ \end{aligned} $$
$$ \begin{aligned} &A_{4,4} = \frac{{h^{6} \bar{E}_{h} - 6A_{4,3} }}{\lambda }\quad A_{4,5} = \upsilon A_{1,4} \quad A_{4,6} = \upsilon A_{2,4} \quad A_{4,7} = \upsilon A_{3,4} \quad A_{4,8} = \upsilon A_{4,4} \hfill \\ &A_{4,9} = A_{4,5} \quad A_{4,10} = A_{4,6} \quad A_{4,11} = A_{4,7} \hfill \\ \end{aligned} $$
$$ A_{5,5} = A_{1,1} \quad A_{5,6} = A_{1,2} \quad A_{5,7} = A_{1,3} \quad A_{5,8} = A_{1,4} \quad A{}_{5,9} = A_{1,5} \quad A_{5,10} = A_{1,6} \quad A_{5,11} = A_{1,7} $$
$$ A_{6,6} = A_{2,2} \quad A_{6,7} = A_{2,3} \quad A_{6,8} = A_{2,4} \quad A_{6,9} = A_{2,5} \quad A_{6,10} = A_{2,6} \quad A_{6,11} = A_{2,7} $$
$$ A_{7,7} = A_{3,3} \,\,\,\,\,\,A_{7,8} = A_{3,4} \,\,\,\,\,\,A_{7,9} = A_{3,5} \,\,\,\,\,\,A_{7,10} = A_{3,6} \,\,\,\,\,\,A_{7,11} = A_{3,7} $$
$$ A_{8,8} = A_{4,4} \quad A_{8,9} = A_{4,5} \quad A_{8,10} = A_{4,6} \quad A_{8,11} = A_{4,7} $$
$$ A_{9,9} = A_{1,1} \quad A_{9,10} = A_{1,2} \quad A_{9,11} = A_{1,3} $$
$$ A_{10,10} = A_{2,2} \quad A_{10,11} = A_{2,3} $$
$$ A_{11,11} = A_{3,3} $$

where, \( \bar{E}_{h} = \left( {\frac{{E_{o} }}{{1 - \upsilon^{2} }}} \right)e^{\lambda } \quad {\text{and}}\quad \bar{E}_{o} = \frac{{E_{o} }}{{(1 - \upsilon^{2} )}} \) and A i,j = A j,i, (i, j = 1 to 11)

The coefficients of matrix [B] are,

$$ \begin{aligned} &B_{1,1} = \frac{1 - \upsilon }{2}A_{1,1} \quad B_{1,2} = \frac{1 - \upsilon }{2}A_{1,2} \quad B_{1,3} = \frac{1 - \upsilon }{2}A_{1,3} \quad B_{1,4} = \frac{1 - \upsilon }{2}A_{1,4} \hfill \\ &B_{2,2} = \frac{1 - \upsilon }{2}A_{2,2} \quad B_{2,3} = \frac{1 - \upsilon }{2}A_{2,3} \quad B_{2,4} = \frac{1 - \upsilon }{2}A_{2,4} \hfill \\ &B_{3,3} = \frac{1 - \upsilon }{2}A_{3,3} \quad B_{3,4} = \frac{1 - \upsilon }{2}A_{3,4} \hfill \\ &B_{4,4} = \frac{1 - \upsilon }{2}A_{4,4} \hfill \\ \end{aligned} $$

and B i,j = B j,i (i, j = 1 to 4)

[D] and [E] matrix are same as [B] matrix.

The coefficients of vector {I} are

$$ \begin{aligned} &I_{1} = \frac{{\rho_{h} - \rho_{o} }}{{\lambda_{1} }}\,\quad I_{2} = \frac{{h\,\rho_{h} - I_{1} }}{{\lambda_{1} }}\quad I_{3} = \frac{{h^{2} \rho_{h} - 2\,I_{2} }}{{\lambda_{1} }} \hfill \\ &I_{4} = \frac{{h^{3} \rho_{h} - 3\,I_{3} }}{{\lambda_{1} }}\quad I_{5} = \frac{{h^{4} \,\rho_{h} - 4\,I_{4} }}{{\lambda_{1} }}\quad I_{6} = \frac{{h^{5} \rho_{h} - 5\,I_{5} }}{{\lambda_{1} }} \hfill \\ &I_{7} = \frac{{h^{6} \rho_{h} - 6\,I_{6} }}{{\lambda_{1} }} \hfill \\ \end{aligned} $$

The coefficients of matrix [X] are

$$ \begin{aligned} &X_{1,1} = A_{1,1} \alpha^{2} + B_{1,1} \beta^{2} \quad \,X_{1,2} = A_{1,5} \alpha \beta + B_{1,1} \alpha \beta \quad X_{1,3} = 0\quad X_{1,4} = A_{1,2} \alpha^{2} + B_{1,2} \beta^{2} \quad X_{1,5} = A_{1,6} \alpha \beta + B_{1,2} \alpha \beta \quad X_{1,6} = - A_{1,9} \alpha \,\quad X_{1,7} = A_{1,3} \alpha^{2} + B_{1,3} \beta^{2} \quad X_{1,8} = A_{1,7} \alpha \beta + B_{1,3} \alpha \beta \quad X_{1,9} = - 2A_{1,10} \alpha \quad X_{1,10} = A_{1,4} \alpha^{2} + B_{1,4} \beta^{2} \quad X_{1,11} = A_{1,8} \alpha \beta + B_{1,4} \alpha \beta \quad X_{1,12} = - 3A_{1,11} \alpha \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{2,2} = A_{1,5} \beta^{2} + B_{1,1} \alpha^{2} \quad X_{2,3} = 0\quad X_{2,4} = A_{5,2} \alpha \beta + B_{1,2} \alpha \beta \quad X_{2,5} = A_{5,6} \beta^{2} + B_{1,2} \alpha^{2} \quad X_{2,6} = - A_{5,9} \beta \quad X_{2,7} = A_{5,3} \alpha \beta + B_{1,3} \alpha \beta \quad X_{2,8} = A_{5,7} \beta^{2} + B_{1,3} \alpha^{2} \quad X_{2,9} = - 2A_{5,10} \beta \quad X_{2,10} = A_{5,4} \alpha \beta + B_{1,4} \alpha \beta \quad X_{2,11} = A_{5,8} \beta^{2} + B_{1,4} \alpha^{2} \quad X_{2,12} = - 3A_{5,11} \beta \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{3,3} = D_{1,1} \alpha^{2} + E_{1,1} \beta^{2} \quad X_{3,4} = D_{1,1} \alpha \quad X_{3,5} = E_{1,1} \beta \quad X_{3,6} = D_{1,2} \alpha^{2} + E_{1,2} \beta^{2} \quad X_{3,7} = 2D_{1,2} \alpha \quad X_{3,8} = 2E_{1,2} \beta \quad X_{3,9} = D_{1,3} \alpha^{2} + E_{1,3} \beta^{2} \quad X_{3,10} = 3D_{1,3} \alpha \quad X_{3,11} = 3E_{1,3} \beta \quad X_{3,12} = D_{1,4} \alpha^{2} + E_{1,4} \beta^{2} \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{4,4} = A_{2,2} \alpha^{2} + B_{2,2} \beta^{2} + D_{1,1} \quad X_{4,5} = A_{2,6} \alpha \beta + B_{2,2} \alpha \beta \quad X_{4,6} = - A_{2,9} \alpha + D_{1,2} \alpha \quad X_{4,7} = A_{2,3} \alpha^{2} + B_{2,3} \beta^{2} + 2D_{1,2} \quad X_{4,8} = A_{2,7} \alpha \beta + B_{2,3} \alpha \beta \quad X_{4,9} = - 2A_{2,10} \alpha + D_{1,3} \alpha \quad X_{4,10} = A_{2,4} \alpha^{2} + B_{2,4} \beta^{2} + 3D_{1,3} \quad X_{4,11} = A_{2,8} \alpha \beta + B_{2,4} \alpha \beta \quad X_{4,12} = - 3A_{2,11} \alpha + D_{1,4} \alpha \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{5,5} = A_{6,6} \beta^{2} + B_{2,2} \alpha^{2} + E_{1,1} \quad X_{5,6} = - A_{6,9} \beta + E_{1,2} \beta \quad X_{5,7} = A_{6,3} \alpha \beta + B_{2,3} \alpha \beta \quad X_{5,8} = A_{6,7} \beta^{2} + B_{2,3} \alpha^{2} + 2E_{1,2} \quad X_{5,9} = - 2A_{6,10} \beta + E_{1,3} \beta \quad X_{5,10} = A_{6,4} \alpha \beta + B_{2,4} \alpha \beta \quad X_{5,11} = A_{6,8} \beta^{2} + B_{2,4} \alpha^{2} + 3E_{1,3} \quad X_{5,12} = - 3A_{6,11} \beta + E_{1,4} \beta \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{6,6} = D_{2,2} \alpha^{2} + E_{2,2} \beta^{2} + A_{9,9} \quad X_{6,7} = - A_{9,3} \alpha + 2D_{2,2} \beta \quad X_{6,8} = - A_{9,7} \beta + 2E_{2,2} \beta \quad X_{6,9} = D_{2,3} \alpha^{2} + E_{2,3} \beta^{2} + 2A_{9,10} \quad X_{6,10} = - A_{9,4} \alpha + 3D_{2,3} \alpha \quad X_{6,11} = - A_{9,8} \beta + 3E_{2,3} \beta \quad X_{6,12} = D_{2,4} \alpha^{2} + E_{2,4} \beta^{2} + 3A_{9,11} \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{7,7} = A_{3,3} \alpha^{2} + B_{3,3} \beta^{2} + 4D_{2,2} \quad X_{7,8} = A_{3,7} \alpha \beta + B_{3,3} \alpha \beta \quad X_{7,9} = - 2A_{3,10} \alpha + 2D_{2,3} \alpha \quad X_{7,10} = A_{3,4} \alpha^{2} + B_{3,4} \beta^{2} + 6D_{2,4} \quad X_{7,11} = A_{3,8} \alpha \beta + B_{3,4} \alpha \beta \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{8,8} = A_{7,7} \beta^{2} + B_{3,3} \alpha^{2} + 4E_{2,2} \quad X_{8,9} = - 2A_{7,10} \beta + 2E_{2,3} \beta \quad X_{8,10} = A_{7,4} \alpha \beta + B_{3,4} \alpha \beta \quad X_{8,11} = A_{7,8} \beta^{2} + B_{3,4} \alpha^{2} + 6E_{2,3} \quad X_{8,12} = - 3A_{7,11} \beta + 2E_{2,4} \beta \hfill \\ \end{aligned} $$
$$ \begin{aligned} &X_{9,9} = D_{3,3} \alpha^{2} + E_{3,3} \beta^{2} + 4A_{10,10} \quad X{}_{9,10} = - 2A_{10,4} \alpha + 3D_{3,3} \alpha \\ & X_{9,11} = - 2A_{10,8} \beta + 3E_{3,3} \beta \\ &X_{9,12} = D_{3,4} \alpha^{2} + E_{3,4} \beta^{2} + 6A_{10,11} \hfill \\ \end{aligned} $$
$$\begin{aligned} &X_{10,10} = A_{4,4} \alpha^{2} + B_{4,4}\beta^{2} + 9D_{3,3} \\ &X_{10,11} = A_{4,8} \alpha \beta +B_{4,4} \alpha \beta \quad A_{10,12} = - 3A_{4,11} \alpha +3D_{3,4} \alpha \end{aligned} $$
$$\begin{aligned} &X_{11,11} = A_{8,8} \beta^{2} + B_{4,4}\alpha^{2} + 9E_{3,3} \\ &X_{11,12} = - 3A_{8,11} \beta + 3E_{3,4}\beta \end{aligned} $$
$$ X_{12,12} = D_{4,4} \alpha^{2} + E_{4,4} \beta^{2} + 9A_{11,11} $$

in which, \( \alpha = \frac{m\pi }{a} \) and \( \beta = \frac{n\pi }{b} \) and X i,j = X j,i, (i, j = 1 to 12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendhari, S.S., Kant, T., Desai, Y.M. et al. Static solutions for functionally graded simply supported plates. Int J Mech Mater Des 8, 51–69 (2012). https://doi.org/10.1007/s10999-011-9175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-011-9175-1

Keywords

Navigation