Skip to main content
Log in

Thermo-hydraulic characteristics of Al2O3-water nanofluid by preconditioned LBM

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The nanofluids under magnetic fields show great potential in microchannel cooling and thermal absorption of the miniaturized devices. Studies about the lattice Boltzmann method (LBM) have been focusing on the effects of nanoparticle types, volume fractions, and magnetic field intensity at low Reynolds numbers. However, less effort has been made to elucidate the interactions between external forces at large Reynolds numbers. In this work, we firstly developed a preconditioned LBM (PLBM) to overcome the divergence problem of the original LBM caused by variable physical properties and Reynolds numbers, followed by investigating the thermo-hydraulic characteristics of Al2O3-water nanofluid in a microchannel with temperature-dependent physical properties and slip boundary conditions. The effects of the external magnetic field, buoyancy force, and volume fraction of nanoparticles are discussed, and the entropy generation is analyzed. When the magnetic field is applied, the average shear stress is twice that without a magnetic field and the average Nusselt number increases by about 10% and further by about 20% at higher buoyancy forces. Besides, the magnitudes of the entropy generation caused by magnetic field irreversibility are higher than that caused by the heat transfer irreversibility. The numerical study developed in this work elucidates the effects of external force and extends the simulation performance of the existing LB models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

B :

Dimensionless slip factor

B 0 :

Magnetic field intensity

B e :

Bejan number

c :

Absolute molecular velocity

c i :

Lattice discrete velocity

C f :

Friction coefficient

c s :

Lattice speed of sound

c p :

Specific heat

d s :

Nanoparticle diameter

D H = 2H :

Characteristic length

f g :

Density and energy distribution functions

F i :

Force term

\(\tilde{f}_{\text i}\), \(\tilde{g}_{\text i}\) :

Modified discrete density and energy distribution functions

G 1 :

Magnetic force

G 2 :

Buoyancy force

H a :

Hartmann number

H, L :

Height and length

k :

Fluid thermal conductivity

N u :

Nusselt number

Pr :

Prandtl number

q :

Heat flux

r :

Momentum accommodation coefficient

R :

Gas constant

R i :

Richardson number

Re :

Reynolds number

T :

Temperature, K

u :

Velocity vector

U,V :

Dimensionless velocity components

u,v :

Velocity components, m s1

Z :

Heat dissipation term

α :

Thermal diffusivity coefficient

β :

Thermal expansion coefficient

γ :

Gas-specific heat ratio

ξ :

Preconditioned parameter

θ :

Dimensionless temperature

μ :

Dynamic viscosity, Pa S

ν :

Kinematic viscosity, m2 s1

ρ :

Fluid density, kg m3

σ :

Electrical conductivity, (Ω m)1

τ f , τ g :

Dimensionless relaxation times for momentum and internal energy

φ :

Nanoparticles volume fraction

eq:

Equilibrium

eff:

Effective

f :

Fluid

i :

Lattice coordinate direction

in: :

Inlet value of the microchannel

n f :

Nanofluid

s :

Solid

w :

Wall

References

  1. Mohammadpour J, Lee A, Mozafari M, Zargarabadi MR, Mujumdar AS. Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models. Int J Therm Sci. 2021;161:106705.

    Article  CAS  Google Scholar 

  2. Monavari A, Jamaati J, Bahiraei M. Thermohydraulic performance of a nanofluid in a microchannel heat sink: use of different microchannels for change in process intensity. J Taiwan Inst Chem Eng. 2021;125:1–14.

    Article  CAS  Google Scholar 

  3. Heidarshenas A, Azizi Z, Peyghambarzadeh SM, Sayyahi S. Experimental investigation of heat transfer enhancement using ionic liquid-Al2O3 hybrid nanofluid in a cylindrical microchannel heat sink. Appl Therm Eng. 2021;191:116879.

    Article  CAS  Google Scholar 

  4. Mirzaei M, Dehghan M. Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat Mass Transfer. 2013;49:1803–11.

    Article  CAS  Google Scholar 

  5. Salman BH, Mohammed HA, Kherbeet AS. Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. Int Commun Heat Mass Transfer. 2014;59:88–100.

    Article  CAS  Google Scholar 

  6. M’hamed B, Sidik NAC, Yazid MNAWM, Mamat R, Najafi G, Kefayati GHR. A review on why researchers apply external magnetic field on nanofluids. Int Commun Heat Mass Transf. 2016;78:60–7.

    Article  Google Scholar 

  7. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  8. Moshfefgh A, Mehrizi AA, Javadzadegan A, Joshaghani M, Ghasemi-Fare O. Numerical investigation of various nanofluid heat transfer in microchannel under the effect of partial magnetic field: lattice Boltzmann approach. J Therm Anal Calorim. 2020;140:773–87.

    Article  Google Scholar 

  9. Mehrizi AA, Besharati F, Jahanian O, Afrouzi HH. Numerical investigation of conjugate heat transfer in a microchannel with a hydrophobic surface utilizing nanofluids under a magnetic field. Phys Fluids. 2021;33:052002-1-052002–13.

    Google Scholar 

  10. Jurčevič M, Nižetič S, Arıcı M, Ocłoń P. Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with brief overview of safety equipment. J Clean Prod. 2020;274:122963.

    Article  Google Scholar 

  11. Nižetić S, Jurčevič M, Arıcı M, Arasu AV, Xie GN. Nano-enhanced phase change materials and fluids in energy applications: a review. Renew Sustain Energy Rev. 2020;129:109931.

    Article  Google Scholar 

  12. Alagumalai A, Qin CY, Vimal KEK, Solomin E, Yang L, Zhang P, Otanicar T, Kasaeian A, Chamkha AJ, Rashidi MM, Wongwises S, Ahn HS, Lei Z, Saboori T, Mahian O. Conceptual analysis framework development to understand barriers of nanofluid commercialization. Nano Energy. 2022;92:106736.

    Article  CAS  Google Scholar 

  13. Moshizi SA, Malvandi A. Magnetic field effects on nanoparticle migration at mixed convection of MHD nanofluids flow in microchannels with temperature-dependent thermophysical properties. J Taiwan Inst Chem Eng. 2016;66:269–82.

    Article  CAS  Google Scholar 

  14. Malvandi A, Moshizi SA, Ganji DD. Effects of temperature-dependent thermophysical properities on nanoparticle migration at mixed convection of nanofluids in vertical microchannels. Powder Technol. 2016;303:7–19.

    Article  CAS  Google Scholar 

  15. Arefmanesh A, Aghaei A, Ehteram H. Mixed convection heat transfer in a CuO-water filled trapezoidal enclosure, effects of various constant and variable properties of the nanofluid. Appl Math Model. 2016;40:815–31.

    Article  Google Scholar 

  16. Sheikhzadeh GA, Qomi ME, Hajialigol N, Fattahi A. Numerical study of mixed convection flow in a lid-driven enclosure filled with nanofluid using variable properties. Results Phys. 2012;2:5–13.

    Article  Google Scholar 

  17. J. Li, Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, PhD Thesis, Raleigh, North Carolina, the United States: North Carolina State University, 2008.

  18. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nanoparticles of Al2O3 and Ag on the MHD nanofluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Physica E. 2017;86:146–53.

    Article  CAS  Google Scholar 

  19. Lalami AA, Afrouzi HH, Moshfegh A, Omidi M, Javadzadegan A. Investigation of nanofluid heat transfer in a microchannel under magnetic field via lattice Boltzmann method: effects of surface hydrophobicity, viscous dissipation, and Joule heating. J Heat Transfer-Trans ASME. 2019;141:062403-1-062403–10.

    Google Scholar 

  20. Sheikholeslami M, Gorgi-Bandpy M, Ganji DD. Numerical investigation of MHD effects on Al2O3-water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy. 2013;60:501–10.

    Article  CAS  Google Scholar 

  21. Fattahi A. LBM simulation of thermo-hydrodynamic and irreversibility characteristics of a nanofluid in microchannel heat sink under affecting a magnetic field. Energy Sour, Part A: Recovery, Util Environ Effects. 2020. https://doi.org/10.1080/155670362020.

    Article  Google Scholar 

  22. Kalteh M, Abedinzadeh SS. Numerical investigation of MHD nanofluid forced convection in a microchannel using lattice Boltzmann method. Iran J Sci Technol Trans Mech Eng. 2018;42:23–4.

    Article  Google Scholar 

  23. Ghadirzadeh S, Kalteh M. Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel. Int J Mech Sci. 2017;133:524–34.

    Article  Google Scholar 

  24. Afrouzi HH, Hosseini M, Toghraie D, Mehryaar E, Afrand M. Thermo-hydraulic characteristics investigation of nanofluid heat transfer in a microchannel with super hydrophobic surfaces under non-uniform magnetic field using incompressible preconditioned lattice Boltzmann method (IPLBM). Physica A-Stat Mech Appl. 2020;553:124669-1-124669–21.

    Article  Google Scholar 

  25. Zhou JF, Gu G, Meng XN, Shao CL. Effect of alternating gradient magnetic field on heat transfer enhancement of magnetoreological fluid flowing through microchannel. Appl Therm Eng. 2019;150:1116–25.

    Article  Google Scholar 

  26. Ltaifa KB, D’Orazio A, Dhahri H. Numerical analysis of mixed convection heat transfer and laminar flow in a rectangular inclined micro-channel totally filled with water/Al2O3 nano fluid. J Therm Anal Calorim. 2021;144:2465–82.

    Article  Google Scholar 

  27. Servati AA, Javaherdeh VK, Ashorynejad HR. Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using lattice Boltzmann method. Adv Powder Technol. 2014;25:666–75.

    Article  Google Scholar 

  28. Ma Y, Mohebbi R, Rashidi MM, Yang ZG. MHD forced convection of MWCNT-Fe3O4/water hybrid nanofluid in a partially heated s-shaped channel using LBM. J Therm Anal Calorim. 2019;136:1723–35.

    Article  CAS  Google Scholar 

  29. Lalami AA, Afrouzi HH, Moshfegh A. Investigation of MHD effect on nanofluid heat transfer in microchannels: an incompressible lattice Boltzmann approach. J Therm Anal Calorim. 2019;136:1959–75.

    Article  Google Scholar 

  30. He XY, Chen SY, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys. 1998;146:282–300.

    Article  Google Scholar 

  31. Zhang YC, Xie GN, Karimipour A, Sunden B. LBM modeling and analysis on microchannel slip flow and heat transfer under different heating conditions. Numer Heat Transf Part A-Appl. 2020;78:159–79.

    Article  CAS  Google Scholar 

  32. Li J, Kleinstreuer C. Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow. 2008;29:1221–32.

    Article  CAS  Google Scholar 

  33. Maxwell JC. A treatise on electricity and magnetism, vol. II. Cambridge, UK: Oxford University Press; 1873.

    Google Scholar 

  34. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  35. Shu C, Niu XD, Chew YT. A lattice Boltzmann kinetic model for microflow and heat transfer. J Stat Phys. 2005;121:239–55.

    Article  Google Scholar 

  36. Jery AE, Hidouri N, Magherbi M, Brahim AB. Effect of an external oriented magnetic field on entropy generation in natural convection. Entropy. 2010;12:1391–417.

    Article  Google Scholar 

  37. Srinivasacharya D, Bindu KH. Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions. Energy. 2016;111:165–77.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Shenzhen Science and Technology Program (JCYJ20210324142812032), the Major Program of the Natural Science Foundation of Shandong Province (ZR2019ZD11), and the National 111 Project (B18041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihong Li or Gongnan Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, W., Li, Y. et al. Thermo-hydraulic characteristics of Al2O3-water nanofluid by preconditioned LBM. J Therm Anal Calorim 147, 9811–9827 (2022). https://doi.org/10.1007/s10973-022-11197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11197-8

Keywords

Navigation