Skip to main content
Log in

Investigation of MHD effect on nanofluid heat transfer in microchannels

An incompressible lattice Boltzmann approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An incompressible preconditioned lattice Boltzmann method (IPLBM) is proposed to investigate the fluid flow and heat transfer characteristics of nanofluid in microchannel with hydrophilic or superhydrophobic walls and partially under the influence of transverse magnetic field as well as a heat flux. The modified IPLBM is shown to overcome the velocity inaccuracy in developing regime under partial magnetic field with respect to standard LBM. Then, the method is utilized to resolve the velocity and temperature fields at Re = 100 and various volume fractions of nanoparticles (0 ≤ φ ≤ 0.2%), Hartmann numbers (0 ≤ Ha ≤ 30) and slip coefficients (0 ≤ B ≤ 0.1). Superhydrophobic walls are shown to reduce the wall shear stress at B = 0.1 of up to 38.4, 58.5 and 70%, respectively, for Ha = 0, 15 and 30. Ignoring the temperature jump in modeling overestimates the Nusselt number with an error that culminates at B = 0.1 and φ = 0.2% to 19.6, 22.7 and 25%, respectively, for Ha = 0, 15 and 30. It is concluded that with magnetic field presence and realistic temperature jump, the surface material of superhydrophobic walls should be chosen properly to avoid inevitable and uncontrolled reduction in heat transfer, such that the highest hydrophobicity is not always the best choice. Reasonable agreements are achieved by comparing our results with credible analytic and numerical solutions and also with an experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\({\vec{\mathbf{a}}}\) :

Acceleration vector of transverse magnetic field (m s−2)

a x :

Acceleration component in x direction, (m s−2)

a y :

Acceleration component in y direction, (m s−2)

B = β/H C :

Dimensionless slip coefficient

B 0 :

Magnetic field intensity [T]

\(\vec{c}\) :

Microscopic lattice velocity vector

\(\overline{{{\mathbf{C}}_{{\mathbf{f}}} }}\) :

Friction factor

C p :

Specific heat capacity (J kg−1 K−1)

C S :

Lattice speed of sound

f :

Density distribution function

F :

Source term

g :

Dimensionless temperature distribution function

Ha = B 0 H Cnf/ µ nf)0.5 :

Hartmann number

H C :

Height of the microchannel (μm)

k :

Thermal conductivity coefficient (W m−1 K−1)

Ma = u/C S :

Mach number

Nu :

Nusselt number

\(\overline{Nu}\) :

Average Nusselt number

Pr = ν/α :

Prandtl number

q″:

Heat flux (W m−2)

Re = U in H c/ν nf :

Reynolds number

T :

Temperature (K)

u :

Horizontal velocity (m s−1)

\({\vec{\mathbf{V}}}\) :

Velocity vector (m s−1)

v :

Vertical velocity (m s−1)

W :

Weight function

x, y :

Horizontal and vertical coordinates (m)

α :

Thermal diffusivity coefficient (m2 s−1)

β :

Slip coefficient [μm]

γ :

Adjustable parameter for PLBM

Γ :

Ratio of specific heat capacity

ζ :

Temperature jump coefficient

θ :

Dimensionless temperature

θ FD :

Dimensionless fully developed temperature

θ jump :

Dimensionless temperature jump

µ :

Dynamic viscosity [Pa.s]

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

σ :

Electrical conductivity (siemens m−1)

τ f :

Relaxation time for f

τ g :

Relaxation time for g

\(\bar{\tau }_{\text{w}}\) :

Averaged wall shear stress (Pa)

φ :

Volume fraction of nanoparticles

w :

Weight coefficient

eq:

Equilibrium

f:

Pure fluid

FD:

Fully developed

in:

Inlet of channel

k:

Direction of lattice links

nf:

Nanofluid

*:

Dimensionless

References

  1. Hajati A, Kim SG. Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett. 2011;99(8):083105.

    Article  CAS  Google Scholar 

  2. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib. Adv Mech Eng. 2016;8(4):1687814016641016.

    Article  CAS  Google Scholar 

  3. Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq. 2017;1(236):254–65.

    Article  CAS  Google Scholar 

  4. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  5. Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer. 1999;121(2):280–9.

    Article  CAS  Google Scholar 

  6. Eastman JA, Choi SU, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    Article  CAS  Google Scholar 

  7. Park SH. Electrical, electromagnetic and structural characteristics of carbon nanotube-polymer nanocomposites. Doctoral dissertation, UC San Diego.

  8. Halelfadl S, Maré T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Thermal Fluid Sci. 2014;1(53):104–10.

    Article  CAS  Google Scholar 

  9. Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Coll Interface Sci. 2006;21(128):37–46.

    Article  CAS  Google Scholar 

  10. Wang H. Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci. 2009;14(5):364–71.

    Article  CAS  Google Scholar 

  11. M’hamed B, Sidik NA, Yazid MN, Mamat R, Najafi G, Kefayati GH. A review on why researchers apply external magnetic field on nanofluids. Int Commun Heat Mass Transfer. 2016;78:60–7.

    Article  CAS  Google Scholar 

  12. Mousavi SM, Farhadi M, Sedighi K. Effect of non-uniform magnetic field on biomagnetic fluid flow in a 3D channel. Appl Math Model. 2016;40(15–16):7336–48.

    Article  Google Scholar 

  13. Mehrizi AA, Sedighi K, Farhadi M, Sheikholeslami M. Lattice Boltzmann simulation of natural convection heat transfer in an elliptical-triangular annulus. Int Commun Heat Mass Transfer. 2013;1(48):164–77.

    Article  Google Scholar 

  14. Sawada T, Tanahashi T, Ando T. Two-dimensional flow of magnetic fluid between two parallel plates. J Magn Magn Mater. 1987;65(2–3):327–9.

    Article  CAS  Google Scholar 

  15. Duwairi H, Abdullah M. Thermal and flow analysis of a magneto-hydrodynamic micropump. Microsyst Technol. 2007;13(1):33–9.

    Article  CAS  Google Scholar 

  16. Aminossadati SM, Raisi A, Ghasemi B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Non Linear Mech. 2011;46(10):1373–82.

    Article  Google Scholar 

  17. Tretheway DC, Meinhart CD. Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids. 2002;14(3):L9–12.

    Article  CAS  Google Scholar 

  18. Afrand M, Karimipour A, Nadooshan AA, Akbari M. The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field. Phys E. 2016;1(84):474–81.

    Article  CAS  Google Scholar 

  19. Karimipour A, Taghipour A, Malvandi A. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J Magn Magn Mater. 2016;1(419):420–8.

    Article  CAS  Google Scholar 

  20. Karimipour A, Afrand M. Magnetic field effects on the slip velocity and temperature jump of nanofluid forced convection in a microchannel. Proc Inst Mech Eng Part C J Mech Eng Sci. 2016;230(11):1921–36.

    Article  CAS  Google Scholar 

  21. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Phys E. 2017;1(86):146–53.

    Article  CAS  Google Scholar 

  22. Afrouzi HH, Farhadi M, Sedighi K, Moshfegh A. Nano-colloid electrophoretic transport: fully explicit modelling via dissipative particle dynamics. Phys B. 2018;15(531):185–95.

    Article  CAS  Google Scholar 

  23. Afrouzi HH, Sedighi K, Farhadi M, Moshfegh A. Lattice Boltzmann analysis of micro-particles transport in pulsating obstructed channel flow. Comput Math Appl. 2015;70(5):1136–51.

    Article  Google Scholar 

  24. Mehrizi AA, Farhadi M, Afroozi HH, Sedighi K, Darz AR. Mixed convection heat transfer in a ventilated cavity with hot obstacle: effect of nanofluid and outlet port location. Int Commun Heat Mass Transfer. 2012;39(7):1000–8.

    Article  CAS  Google Scholar 

  25. Mehrizi AA, Farhadi M, Shayamehr S. Natural convection flow of Cu–Water nanofluid in horizontal cylindrical annuli with inner triangular cylinder using lattice Boltzmann method. Int Commun Heat Mass Transfer. 2013;1(44):147–56.

    Article  CAS  Google Scholar 

  26. Tilehboni SM, Fattahi E, Afrouzi HH, Farhadi M. Numerical simulation of droplet detachment from solid walls under gravity force using lattice Boltzmann method. J Mol Liq. 2015;1(212):544–56.

    Article  CAS  Google Scholar 

  27. Rao PR, Schaefer LA. Numerical stability of explicit off-lattice Boltzmann schemes: a comparative study. J Comput Phys. 2015;15(285):251–64.

    Article  Google Scholar 

  28. Chen X, Jin L, Zhang X. Slip flow and heat transfer of magnetic fluids in micro porous media using a Lattice Boltzmann Method. Open Access Library J. 2014;1(09):1.

    CAS  Google Scholar 

  29. Agarwal R. Lattice Boltzmann simulation of magnetohydrodynamic slip flow in microchannels. Bull Am Phys Soc. 2003;48(10):93.

    Google Scholar 

  30. Kalteh M, Abedinzadeh SS. Numerical investigation of MHD nanofluid forced convection in a microchannel using lattice Boltzmann method. Iran J Sci Technol Trans Mech Eng. 2018;42(1):23–34.

    Article  Google Scholar 

  31. Zhou L, Xuan Y, Li Q. Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method. Int J Multiph Flow. 2010;36(5):364–74.

    Article  CAS  Google Scholar 

  32. Nabavitabatabayi M, Shirani E, Rahimian MH. Investigation of heat transfer enhancement in an enclosure filled with nanofluids using multiple relaxation time lattice Boltzmann modeling. Int Commun Heat Mass Transfer. 2011;38(1):128–38.

    Article  CAS  Google Scholar 

  33. Yang YT, Lai FH. Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids. Heat Mass Transf. 2011;47(10):1229.

    Article  CAS  Google Scholar 

  34. Raisi A, Ghasemi B, Aminossadati SM. A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions. Numer Heat Transf Part A Appl. 2011;59(2):114–29.

    Article  CAS  Google Scholar 

  35. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B Fluids. 2015;1(49):89–99.

    Article  Google Scholar 

  36. Amrollahi A, Rashidi AM, Lotfi R, Meibodi ME, Kashefi K. Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. Int Commun Heat Mass Transfer. 2010;37(6):717–23.

    Article  CAS  Google Scholar 

  37. Guo Z, Zhao TS, Shi Y. Preconditioned lattice-Boltzmann method for steady flows. Phys Rev E. 2004;70(6):066706.

    Article  CAS  Google Scholar 

  38. He X, Luo L-S. Lattice Boltzmann model for the incompressible Navier–Stokes equation. J Stat Phys. 1997;88(3):927–44.

    Article  Google Scholar 

  39. Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E. 2002;65(4):046308.

    Article  CAS  Google Scholar 

  40. Izquierdo S, Fueyo N. Optimal preconditioning of lattice Boltzmann methods. J Comput Phys. 2009;228(17):6479–95.

    Article  CAS  Google Scholar 

  41. Kalteh M, Hasani H. Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure. Superlattices Microstruct. 2014;1(66):112–28.

    Article  CAS  Google Scholar 

  42. Inamuro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann simulations. Phys Fluids. 1995;7:2928–30.

    Article  CAS  Google Scholar 

  43. D’Orazio A, Succi S. Boundary conditions for thermal lattice Boltzmann simulations. In: International Conference on Computational Science. Springer, Berlin, Heidelberg; 2003. p. 977–986.

  44. Mohamad AA. Lattice Boltzmann method: fundamentals and engineering applications with computer codes. New York: Springer Science & Business Media; 2011.

    Book  Google Scholar 

  45. Zarita R, Hachemi M. Microchannel fluid flow and heat transfer by lattice boltzmann method.

  46. Afshar H, Shams M, Nainian SM, Ahmadi G. Microchannel heat transfer and dispersion of nanoparticles in slip flow regime with constant heat flux. Int Commun Heat Mass Transfer. 2009;36(10):1060–6.

    Article  CAS  Google Scholar 

  47. Back LH. Laminar heat transfer in electrically conducting fluids flowing in parallel plate channels. Int J Heat Mass Transf. 1968;11(11):1621–36.

    Article  Google Scholar 

  48. Manay E, Sahin B. Heat transfer and pressure drop of nanofluids in a microchannel heat sink. Heat Transfer Eng. 2017;38(5):510–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Hassanzadeh Afrouzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour Lalami, A., Hassanzadeh Afrouzi, H. & Moshfegh, A. Investigation of MHD effect on nanofluid heat transfer in microchannels. J Therm Anal Calorim 136, 1959–1975 (2019). https://doi.org/10.1007/s10973-018-7851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7851-1

Keywords

Navigation