Skip to main content
Log in

MHD forced convection of MWCNT–Fe3O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Forced convection heat transfer of multi-wall carbon nanotubes–iron oxide nanoparticles/water hybrid nanofluid (MWCNT–Fe3O4/water hybrid nanofluid) inside a partially heated τ-shaped channel has been numerically investigated. The effect of magnetic field is taken into account. The governing equations are solved by the lattice Boltzmann method in the domain, and the results were compared with other numerical methods by an excellent agreement between them. The effects of parameters such as Hartmann number (0 ≤ Ha ≤ 60), volume fraction of nanoparticles (0 ≤ ϕ ≤ 0.003) and different location of two heaters on the fluid flow and heat transfer are studied. The results indicate that for all cases, the average Nusselt number of each heater increases as the volume fraction of nanoparticles increases. The heat transfer characteristics were significantly affected by the arrangement of the two heaters. The heaters located on the left half of the top wall is convection-dominant mechanism, and the conduction heat transfer is the primary mechanism when the heater is on the right half of the top wall. The average Nusselt number increases as Ha increases for the heater of dominating convection mechanism but decreases for the heater of dominating conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

X 1, X 2 :

Positions of the heaters

h :

Width of the channel

H :

Height of the channel

e i :

Discrete lattice velocity in direction

f :

Density distribution function

f eq :

Equilibrium density distribution function

Ha :

Hartmann number

Nu :

Nusselt number

U, V :

Non-dimensional velocity components

Pr :

Prandtl number

L :

Length of the heaters

W :

Length of the channel

θ :

Orientation of the magnetic field

c s :

Speed of sound in Lattice scale

g :

Energy distribution function

g eq :

Equilibrium energy distribution function

k B :

Boltzmann constant

T :

Fluid temperature

k :

Thermal conductivity

Ra :

Rayleigh number

ω i :

Mass function in direction i

ϕ :

Volume fraction

τ c :

Relaxation time for temperature

α :

Thermal diffusivity

ρ :

Density

τ v :

Relaxation time for flow

β :

Thermal expansion coefficient

μ :

Dynamic viscosity

loc:

Local

s:

Solid particles

nf:

Nanofluid

c:

Cold

ave:

Average

f:

Fluid

h:

Hot

i:

Move direction of single particle

References

  1. Nasrin R, Rahim NA, Fayaz H, et al. Water/MWCNT nanofluid based cooling system of PVT: experimental and numerical research. Renew Energy. 2018;121:286–300.

    Article  CAS  Google Scholar 

  2. Ghadikolaei SS, Hosseinzadeh K, Ganji DD, et al. Fe3O4–(CH2OH)2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid. J Mol Liq. 2018;258:172–85.

    Article  CAS  Google Scholar 

  3. Shi X, Li S, Wei Y, et al. Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel. Int Commun Heat Mass Transf. 2018;90:111–20.

    Article  CAS  Google Scholar 

  4. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/j.jtice.2018.07.026.

    Article  Google Scholar 

  5. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorimetry. 2018;12:1. https://doi.org/10.1007/s10973-018-7518-y.

    Article  CAS  Google Scholar 

  6. Izadi M, Hoghoughi G, Mohebbi R, Sheremet M. Nanoparticle migration and natural convection heat transfer of Cu–water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liq. 2018;261:357–72.

    Article  CAS  Google Scholar 

  7. Mohammed HA, Bhaskaran G, Shuaib NH, et al. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew Sustain Energy Rev. 2011;15(3):1502–12.

    Article  CAS  Google Scholar 

  8. Kumar NTR, Bhramara P, Sundar LS, et al. Heat transfer, friction factor and effectiveness of Fe3O4 nanofluid flow in an inner tube of double pipe U-bend heat exchanger with and without longitudinal strip inserts. Exp Therm Fluid Sci. 2017;85:331–43.

    Article  CAS  Google Scholar 

  9. Karimi A, Afrand M. Numerical study on thermal performance of an air-cooled heat exchanger: effects of hybrid nanofluid, pipe arrangement and cross section. Energy Convers Manag. 2018;164:615–28.

    Article  CAS  Google Scholar 

  10. Mohebbi R, Lakzayi H, Sidik NAC, et al. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425–35.

    Article  CAS  Google Scholar 

  11. Mohebbi R, Rashidi MM, Izadi M, et al. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.

    Article  CAS  Google Scholar 

  12. Cong Qi, Liang Lin, Rao Zhonghao. Study on the flow and heat transfer of liquid metal based nanofluid with different nanoparticle radiuses using two-phase lattice Boltzmann method. Int J Heat Mass Transf. 2016;94:316–26.

    Article  CAS  Google Scholar 

  13. Ma Y, Mohebbi R, Rashidi MM, et al. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):032001.

    Article  CAS  Google Scholar 

  14. Safari A, Saffar-Avval M, Amani E. Numerical investigation of turbulent forced convection flow of nano fluid in curved and helical pipe using four-equation model. Powder Technol. 2018;328:47–53.

    Article  CAS  Google Scholar 

  15. Ahmed M, Eslamian M. Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. Appl Therm Eng. 2015;78:326–38.

    Article  Google Scholar 

  16. Raisi A, Aminossadati SM, Ghasemi B. An innovative nanofluid-based cooling using separated natural and forced convection in low Reynolds flows. J Taiwan Inst Chem Eng. 2016;62:259–66.

    Article  CAS  Google Scholar 

  17. Abedini A, Armaghani T, Chamkha AJ. MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J Therm Anal Calorimetry. 2018. https://doi.org/10.1007/s10973-018-7225-8.

    Article  Google Scholar 

  18. Selimefendigil F, Oztop HF, Chamkha AJ. MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall. J Therm Anal Calorimetry. 2018. https://doi.org/10.1007/s10973-018-7036-y.

    Article  Google Scholar 

  19. Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular cavity with an opening using Tiwari and Das’ nanofluid model. J Therm Anal Calorimetry. 2018. https://doi.org/10.1007/s10973-018-7037-x.

    Article  Google Scholar 

  20. Sheikholeslami M, Vajravelu K, Rashidi MM. Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf. 2016;92:339–48.

    Article  CAS  Google Scholar 

  21. Rashidi MM, Abelman S, Mehr NF. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013;62:515–25.

    Article  CAS  Google Scholar 

  22. Elshehabey HM, Ahmed SE. MHD mixed convection in a lid-driven cavity filled by a nanofluid with sinusoidal temperature distribution on the both vertical walls using Buongiorno’s nanofluid model. Int J Heat Mass Transf. 2015;88:181–202.

    Article  CAS  Google Scholar 

  23. Sheikholeslami M, Bhatti MM. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int J Heat Mass Transf. 2017;111:1039–49.

    Article  CAS  Google Scholar 

  24. Ma Y, Mohebbi R, Rashidi MM, et al. Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. Int J Mod Phys C. 2018;12:1. https://doi.org/10.1142/s0129183118500304.

    Article  Google Scholar 

  25. Ma Y, Rashidi MM, Yang Z. Numerical simulation of flow past a square cylinder with a circular bar upstream and a splitter plate downstream. J Hydrodyn. 2018. https://doi.org/10.1007/s42241-018-0087-5.

    Article  Google Scholar 

  26. Nazari M, Mohebbi R, Kayhani MH. Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: Lattice Boltzmann simulation. J Nonnewton Fluid Mech. 2014;204:38–49.

    Article  CAS  Google Scholar 

  27. Nazari M, Kayhani MH, Mohebbi R. Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. Int J Mod Phys C. 2013;24(09):1350060.

    Article  CAS  Google Scholar 

  28. Mohebbi R, Nazari M, Kayhani MH. Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. J Appl Mech Tech Phys. 2016;57(1):55–68.

    Article  CAS  Google Scholar 

  29. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.

    Article  CAS  Google Scholar 

  30. Mohebbi R, Heidari H. Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities. Int J Mod Phys C. 2017;28(03):1750042.

    Article  CAS  Google Scholar 

  31. Tao S, He Q, Chen B, Yang X, Huang S. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles. Comput Math Appl. 2018;12:1. https://doi.org/10.1016/j.camwa.2018.07.013.

    Article  Google Scholar 

  32. Chen CL, Chang SC, Chang CK. Lattice Boltzmann simulation for mixed convection of nanofluids in a square enclosure. Appl Math Model. 2015;39(8):2436–51.

    Article  Google Scholar 

  33. Mishra L, Baranwal AK, Chhabra RP. Laminar forced convection in power-law fluids from two heated cylinders in a square duct. Int J Heat Mass Transf. 2017;113:589–612.

    Article  Google Scholar 

  34. Sheikholeslami M, Hayat T, Alsaedi A. Numerical simulation for forced convection flow of MHD CuO–H2O nanofluid inside a cavity by means of LBM. J Mol Liq. 2018;249:941–8.

    Article  CAS  Google Scholar 

  35. Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.

    Article  CAS  Google Scholar 

  36. Izadi M, Mohebbi R, Karimi D, et al. Numerical simulation of natural convection heat transfer inside a shaped cavity filled by a MWCNT–Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.

    Article  CAS  Google Scholar 

  37. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Effect of hot obstacle position on natural convection heat transfer of MWCNTs–water nanofluid in U-shaped enclosure using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018.

  38. Izadi M, Mohebbi R, Chamkha A, Pop I. Effects of cavity and heat source aspect ratios on natural convection of a nanofluid in a C-shaped enclosure using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018.

  39. Mohebbi R, Izadi M, Amiri Delouei A, Sajjadi H. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorimetry. 2018. https://doi.org/10.1007/s10973-018-7483-5.

    Article  Google Scholar 

  40. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  41. Kefayati GHR. Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J Mol Liq. 2014;191:1–9.

    Article  CAS  Google Scholar 

  42. Asadi Abchouyeh M, Mohebbi R, Solaymani Fard O. Lattice Boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle. Int J Mod Phys C. 2018. https://doi.org/10.1142/S0129183118500791.

    Article  Google Scholar 

  43. Mohamad AA, Kuzmin A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transf. 2010;53(5–6):990–6.

    Article  Google Scholar 

  44. Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954;94(3):511.

    Article  CAS  Google Scholar 

  45. Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30(1):329–64.

    Article  Google Scholar 

  46. Qian YH, d’Humières D, Lallemand P. Lattice BGK models for Navier–Stokes equation. EPL (Europhys Lett). 1992;17(6):479.

    Article  Google Scholar 

  47. Yan YY, Zu YQ. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach. Int J Heat Mass Transf. 2008;51(9):2519–36.

    Article  CAS  Google Scholar 

  48. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9(6):1591–8.

    Article  CAS  Google Scholar 

  49. Mohamad AA. Applied lattice Boltzmann method for transport phenomena, momentum, heat and mass transfer. Can J Chem Eng. 2007;85(6):946.

    Google Scholar 

  50. Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. Int J Therm Sci. 2009;48(2):391–400.

    Article  CAS  Google Scholar 

  51. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Automotive Wind Tunnel Technical Service Platform (16DZ2290400). The computing facility of Shanghai Key Laboratory of Vehicle Aerodynamics and Vehicle Thermal Management Systems is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasul Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Mohebbi, R., Rashidi, M.M. et al. MHD forced convection of MWCNT–Fe3O4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM. J Therm Anal Calorim 136, 1723–1735 (2019). https://doi.org/10.1007/s10973-018-7788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7788-4

Keywords

Navigation