Skip to main content
Log in

Investigation of double-diffusive mixed convection effect on the particles dissolution in the shear flow using coupled SPM–LBM

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, double-diffusive mixed convection related to the heat and mass transfer of the solid particles dissolution in a shear flow was numerically investigated. For this purpose, the study employed the combined two-dimensional thermal-concentration smoothed profile-lattice Boltzmann method scheme. The governing equations of the flow, concentration and temperature fields are solved by applying the LBM. The interplay amongst the fluid–solid particle and the boundary condition of the no-slip at the interface of the fluid–solid particle is treated by using the SPM. Initially, a comparison made amongst the results obtained in the present numerical method and to those that had been obtained in the previous works, showing a well compatibility. Then, the impacts of Reynolds number, thermal and concentration Grashof numbers and buoyancy ratio on the flow characteristics and dissolution process have been addressed. Following that, a comparison is made amongst the impacts of pure forced convection and double-diffusive mixed convection on the solid particle dissolution behavior. It is shown that different competitive mechanisms have impact on the migration of the solid particles under the double-diffusive mixed convection; these are the particle mass force, the buoyancy force resulting from the fluid weight, the thermal convection and finally, the concentration convection. The numerical results also revealed the identification of the critical buoyancy ratio, with the dissolution time of the solid particles being sensitive to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Br:

Buoyancy ratio

C(xt):

Concentration field

C*(xt):

Middle concentration

C ref :

Reference concentration

C s :

Speed of sound

C ij :

Force scale

e α :

Discrete velocity vector

f α :

Density distribution functions

f eqα :

Momentum equilibrium distribution function

F α :

Discrete force (hydrodynamic)

F Hi :

Hydrodynamic force on the ith particle

F ini :

Actual hydrodynamic force on the ith particle

f s :

Solid–fluid hydrodynamic force

f e :

External force

F exti :

External force on the ith particle

F ri :

Repulsive force on the ith particle

F wr,ij :

Collision force amongst a particle and wall

F pr,ij :

Collision force amongst a particle and other particles

g α :

Temperature distribution functions

g eqα :

Temperature equilibrium distribution function

G Tα :

Heat source term

GrC :

Concentration Grashof number

GrT :

Thermal Grashof number

I p :

Particle moment

j α :

Concentration distribution functions

j eqα :

Concentration equilibrium distribution function

J C α :

Concentration source term

Le:

Lewis number

M p :

Particle mass

N p :

Numbers of particles

P :

Dimensionless pressure

Pr:

Prandtl number

q C :

Solid–fluid mass transfer driving force

q T :

Solid–fluid heat transfer driving force

Re:

Reynolds number

Ri:

Rayleigh number

R i(t):

Position of the particles

R i :

ith particle location

R j :

jth particle location

R wj :

Position of the wall

Sc:

Schmidt number

T(xt):

Temperature field

T*(xt):

Middle temperature

T ref :

Reference temperature

\(T_{i}^{\text{H}}\) :

Torque exerted on the ith particle

\(T_{i}^{\text{ext}}\) :

External torque on the ith particle

\(T_{i}^{\text{in}}\) :

Actual torque on the ith particle

u(xt):

Velocity field

u*(xt):

Middle velocity

u p(xt):

Particle velocity

v i(t):

Translational velocity on the ith particle

w i(t):

Angular velocity on the ith particle

x :

Coordinates of the grid points

ξ :

Dimensionless concentration

θ :

Dimensionless temperature

τ f :

Momentum relaxation time

τ g :

Thermal relaxation time

τ j :

Concentration relaxation time

φ(xt):

Particle concentration function

ρ(xt):

Density field

ρ p :

Particle density

ρ f :

Fluid density

v :

Fluid kinematic viscosity

α :

Thermal conductivity

Г :

Diffusion coefficient

Δt :

Time step

w α :

Mass coefficient

β T :

Temperature expansion coefficient

β C :

Concentration expansion coefficient

ε wε p :

Stiffness coefficients

ζ :

Interfacial thickness

References

  1. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019. https://doi.org/10.1007/s10973-018-7982-4.

    Article  CAS  Google Scholar 

  2. Zheng Y, Yaghoubi S, Dezfulizadeh A, Aghakhani S, Karimipour A, Tlili I. Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09497-y.

    Article  Google Scholar 

  3. Liu X, Toghraie D, Hekmatifar M, Akbari OA, Karimipour A, Afrand M. Numerical investigation of nanofluid laminar forced convection heat transfer between two horizontal concentric cylinders in the presence of porous medium. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09406-3.

    Article  Google Scholar 

  4. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;1312:1553–66. https://doi.org/10.1007/s10973-017-6649-x.

    Article  CAS  Google Scholar 

  5. Hassani M, Karimipour A. Discrete ordinates simulation of radiative participating nanofluid natural convection in an enclosure. J Therm Anal Calorim. 2018;1343:2183–95. https://doi.org/10.1007/s10973-018-7233-8.

    Article  CAS  Google Scholar 

  6. Yang C, Zhang J, Koch DL, Yin X. Mass/heat transfer from a neutrally buoyant sphere in simple shear flow at finite Reynolds and Peclet numbers. AIChE J. 2011;57:1419–33. https://doi.org/10.1002/aic.12370.

    Article  CAS  Google Scholar 

  7. Zhan S, Li M, Zhou J, Yang J, Zhou Y. CFD simulation of dissolution process of alumina in an aluminum reduction cell with two-particle phase population balance model. Appl Therm Eng. 2014;73:805–18. https://doi.org/10.1016/j.applthermaleng.2014.08.040.

    Article  CAS  Google Scholar 

  8. Ye D, Bogner R, Li JQ, Fan TH. Dissolution of a colloidal particle in an oscillatory flow. Int J Heat Mass Transf. 2017;107:489–99. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.066.

    Article  CAS  Google Scholar 

  9. Yuan B, Yang C, Mao ZS, Yin X, Koch DL. Heat/mass transfer from a neutrally buoyant sphere by mixed natural and forced convection in a simple shear flow. AIChE J. 2018;64:2816–27. https://doi.org/10.1002/aic.16122.

    Article  CAS  Google Scholar 

  10. Ladd A, Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys. 2001;104:1191–251. https://doi.org/10.1023/A:1010414013942.

    Article  CAS  Google Scholar 

  11. Chen S, Doolen GD. Lattice Boltzmann method for fluid flow. Annu Rev Fluid Mech. 2002;30:329–64. https://doi.org/10.1146/annurev.fluid.30.1.329.

    Article  Google Scholar 

  12. Campos JO, Oliveira RS, Dos Santos RW, Rocha BM. Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs. J Comput Appl Math. 2016;295:70–82. https://doi.org/10.1016/j.cam.2015.02.008.

    Article  Google Scholar 

  13. Gharibi F, Jafari S, Rahnama M, Khalili B, Jahanshahi Javaran E. Simulation of flow in granular porous media using combined Lattice Boltzmann Method and Smoothed Profile Method. Comput Fluids. 2018;177:1–11. https://doi.org/10.1016/J.COMPFLUID.2018.09.020.

    Article  Google Scholar 

  14. Zhou X, Jiang Y, Li X, Cheng K, Huai X, Zhang X, Huang H. Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing nano liquid-metal fluid. Int Commun Heat Mass Transf. 2019;106:46–54. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2019.05.003.

    Article  CAS  Google Scholar 

  15. Karimipour A, Nezhad A, D’Orazio A, Shirani E. Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int J Therm Sci. 2012;54:142–52. https://doi.org/10.1016/j.ijthermalsci.2011.11.015.

    Article  CAS  Google Scholar 

  16. Zhou W, Yan Y, Liu X, Chen H, Liu B. Lattice Boltzmann simulation of mixed convection of nanofluid with different heat sources in a double lid-driven cavity. Int Commun Heat Mass Transf. 2018;97:39–46. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2018.07.008.

    Article  CAS  Google Scholar 

  17. Safaei M, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Physica A. 2018;509:515–35. https://doi.org/10.1016/j.physa.2018.06.034.

    Article  CAS  Google Scholar 

  18. Ma C. Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source. Nonlinear Anal Real World Appl. 2009;10:2666–78. https://doi.org/10.1016/j.nonrwa.2008.07.006.

    Article  Google Scholar 

  19. Fu B, Yuan X, Liu B, Chen S, Zhang H, Zeng A, Yu G. Characterization of Rayleigh convection in interfacial mass transfer by lattice boltzmann simulation and experimental verification. Chin J Chem Eng. 2011;19:845–54. https://doi.org/10.1016/s1004-9541(11)60064-5.

    Article  CAS  Google Scholar 

  20. Jia X, Williams RA. A hybrid mesoscale modelling approach to dissolution of granules and tablets. Chem Eng Res Des. 2007;85:1027–38. https://doi.org/10.1205/cherd06218.

    Article  CAS  Google Scholar 

  21. Wang L, Wu C, Ge W. Effect of particle clusters on mass transfer between gas and particles in gas-solid flows. Powder Technol. 2017;319:221–7. https://doi.org/10.1016/j.powtec.2017.06.046.

    Article  CAS  Google Scholar 

  22. Hu J, Guo Z. A numerical study on the migration of a neutrally buoyant particle in a Poiseuille flow with thermal convection. Int J Heat Mass Transf. 2017;108:2158–68. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.077.

    Article  Google Scholar 

  23. Mozaffari M, Karimipour A, D’Orazio A. Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside. J Therm Anal Calorim. 2019;137(1):229–43. https://doi.org/10.1007/s10973-018-7917-0.

    Article  CAS  Google Scholar 

  24. Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Physica A. 2014;402:150–68. https://doi.org/10.1016/j.physa.2014.01.057.

    Article  CAS  Google Scholar 

  25. Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids. 2001;13:3452–9. https://doi.org/10.1063/1.1399290.

    Article  CAS  Google Scholar 

  26. Feng ZG, Michaelides EE. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys. 2004;195:602–28. https://doi.org/10.1016/j.jcp.2003.10.013.

    Article  Google Scholar 

  27. Aidun CK, Clausen JR. Lattice-Boltzmann Method for Complex Flows. Annu Rev Fluid Mech. 2010;42:439–72. https://doi.org/10.1146/annurev-fluid-121108-145519.

    Article  Google Scholar 

  28. Goldstein D, Handler R, Sirovich L. Modeling a No-Slip Flow Boundary with an External Force Field. J Comput Phys. 1993;105:354–66. https://doi.org/10.1006/jcph.1993.1081.

    Article  Google Scholar 

  29. Mohd-Yusof J. Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries. Annual Research Briefs, Center for Turbulence Research, NASA/AMES Stanford University. 1997, pp 317–327.

  30. Niu XD, Shu C, Chew YT, Peng Y. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett Sect A Gen At Solid State Phys. 2006;354:173–82. https://doi.org/10.1016/j.physleta.2006.01.060.

    Article  CAS  Google Scholar 

  31. Kang SK, Hassan YA. A direct-forcing immersed boundary method for the thermal lattice Boltzmann method. Comput Fluids. 2011;49:36–45. https://doi.org/10.1016/j.compfluid.2011.04.016.

    Article  CAS  Google Scholar 

  32. Ren WW, Shu C, Wu J, Yang WM. Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications. Comput Fluids. 2012;57:40–51. https://doi.org/10.1016/j.compfluid.2011.12.006.

    Article  Google Scholar 

  33. Derksen JJ, Reynolds G, Crampton A, Huang Z, Booth J. Simulations of dissolution of spherical particles in laminar shear flow. Chem Eng Res Des. 2015;93:66–78. https://doi.org/10.1016/j.cherd.2014.06.027.

    Article  CAS  Google Scholar 

  34. Jafari S, Yamamoto R, Rahnama M. Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions. Phys Rev E Stat Nonlinear Soft Matter Phys. 2011;83:026702. https://doi.org/10.1103/physreve.83.026702.

    Article  Google Scholar 

  35. Yamamoto R, Nakayama Y, Kim K. A method to resolve hydrodynamic interactions in colloidal dispersions. Comput Phys Commun. 2005;169:301–4. https://doi.org/10.1016/j.cpc.2005.03.067.

    Article  CAS  Google Scholar 

  36. Mino Y, Shinto H, Sakai S, Matsuyama H. Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method. Phys Rev E. 2017;95:043309. https://doi.org/10.1103/PhysRevE.95.043309.

    Article  PubMed  Google Scholar 

  37. Seta T, Uchiyama T, Takano N. Smoothed profile-lattice Boltzmann method for non-penetration and wetting boundary conditions in two and three dimensions. Comput Fluids. 2017;159:64–80. https://doi.org/10.1016/j.compfluid.2017.09.012.

    Article  Google Scholar 

  38. Hu Y, Li D, Shu S, Niu X. An efficient smoothed profile-lattice Boltzmann method for the simulation of forced and natural convection flows in complex geometries. Int Commun Heat Mass Transf. 2015;68:188–99. https://doi.org/10.1016/j.icheatmasstransfer.2015.05.030.

    Article  CAS  Google Scholar 

  39. Hu Y, Li D, Niu X, Shu S. Fully resolved simulation of particulate flows with heat transfer by smoothed profile-lattice Boltzmann method. Int J Heat Mass Transf. 2018;126:1164–7. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.137.

    Article  CAS  Google Scholar 

  40. Alapati S, Che WS, Ahn JW. Lattice Boltzmann method combined with the smoothed profile method for the simulation of particulate flows with heat transfer. Heat Transf Eng. 2017;40:166–83. https://doi.org/10.1080/01457632.2017.1421296.

    Article  CAS  Google Scholar 

  41. Safa R, Soltani Goharrizi A, Jahanshahi Javaran E, Jafari S. Integrating Thermal-Concentration Smoothed Profile with Lattice Boltzmann Methods for simulating sedimentation of non-isothermal circular particles. Int J Numer Methods Fluids. 2019;92:55–78. https://doi.org/10.1002/fld.4772.

    Article  CAS  Google Scholar 

  42. Safa R, Soltani Goharrizi A, Jafari S, Jahanshahi Javaran E. Simulation of particles dissolution in the shear flow: a combined concentration lattice Boltzmann and smoothed profile approach. Comput Math Appl. 2019. https://doi.org/10.1016/j.camwa.2019.07.015.

    Article  Google Scholar 

  43. Safa R, Soltani Goharrizi A, Jafari S, Jahanshahi Javaran E. On the evaluation of heat and mass transfer effects on the migration behavior of neutrally buoyant particles in a Couette flow. Int J Heat Mass Transf. 2019;144:118659. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118659.

    Article  Google Scholar 

  44. Succi S. The Lattice Boltzmann equation: for fluid dynamics and beyond. Oxford: Oxford University Press; 2011.

    Google Scholar 

  45. Frankel NA, Acrivos A. Heat and mass transfer from small spheres and cylinders freely suspended in shear flow. Phys Fluids. 1968;11:1913–8. https://doi.org/10.1063/1.1692218.

    Article  Google Scholar 

  46. Feng ZG, Michaelides EE. Inclusion of heat transfer computations for particle laden flows. Phys Fluids. 2008. https://doi.org/10.1063/1.2911022.

    Article  Google Scholar 

  47. Eshghinejadfard A, Thévenin D. Numerical simulation of heat transfer in particulate flows using a thermal immersed boundary lattice Boltzmann method. Int J Heat Fluid Flow. 2016;60:31–46. https://doi.org/10.1016/j.ijheatfluidflow.2016.04.002.

    Article  Google Scholar 

  48. Zhang H, Shao Y, Li K, Hu Y. On the thermal boundary conditions of particulate fluid modeling. Powder Technol. 2017;314:315–27. https://doi.org/10.1016/j.powtec.2016.08.038.

    Article  CAS  Google Scholar 

  49. Feng J, Joseph DD, Hu HH. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 2 Couette and Poiseuille flows. J Fluid Mech. 1994;277:271–301. https://doi.org/10.1017/s0022112094002764.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safa, R., Soltani Goharrizi, A., Jafari, S. et al. Investigation of double-diffusive mixed convection effect on the particles dissolution in the shear flow using coupled SPM–LBM. J Therm Anal Calorim 144, 2497–2514 (2021). https://doi.org/10.1007/s10973-020-10019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10019-z

Keywords

Navigation