Skip to main content
Log in

Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside

Develop a model to include buoyancy forces in distribution functions of LBM for slip velocity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the mixed convection of flow in a microchannel containing nanofluid is simulated by the Lattice Boltzmann Method. The water/functionalized multi-wall carbon nanotubes nanofluid is selected as the working fluid. The cold nanofluid passes through the warm walls of the microchannel to cool them down. The buoyancy forces caused by the mass of the nanofluid change the hydrodynamic properties of the flow. Accordingly, the gravitational term is included as an external force in the Boltzmann equation and Boltzmann’s hydrodynamic and thermal equations are rewritten under new conditions. The flow analysis is performed for different values of slip coefficient and Grashof number. The results are expressed in terms of velocity and temperature profiles, contours of streamlines and isotherms beside the slip velocity and temperature jump diagrams. It is observed that the effect of buoyancy force changes the motion properties of the flow in the input region and increases the hydrodynamic input length of flow. These changes are particularly evident at higher values of Grashof numbers and create a rounded circle in the opposite direction of the flow at the microchannel input. The negative slip velocity caused by the vortex resulted in a temperature jump at the input flow region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c :

Microscopic velocity

D H :

Hydraulic diameter (m)

f :

Hydrodynamic distribution function

g :

Thermal distribution function

G :

Buoyancy force

Gr :

Grashof number

h :

Height of microchannel (m)

l :

Length of microchannel (m)

B :

Dimensionless slip coefficient

Pr :

Prandtl number

Re :

Reynolds number

U :

Horizontal dimensionless velocity

U s :

Dimensionless slip velocity

V :

Vertical dimensionless velocity

X :

Dimensionless horizontal Cartesian coordinates

Y :

Dimensionless vertical Cartesian coordinates

θ :

Dimensionless profiles of temperature

θ s :

Dimensionless temperature jump

υ :

Kinematic viscosity (m2 s−1)

References

  1. Neguyen NT, Werely ST. Fundamentals and applications of microfluidics. 2nd ed. Norwood: Artech hous INC; 2006.

    Google Scholar 

  2. Fox RW, McDonald AT. Introduction to fluid mechanics. Wiley: New York; 1994.

    Google Scholar 

  3. Koplik PJ, Banavar JR. Continuum deductions from molecular hydrodynamic. Annu Rev Fluid Mech. 1995;27:257–95.

    Article  Google Scholar 

  4. Brid G. Molecular gas dynamics and the direct simulation of gas flows. Oxford: Oxford University Press; 1994.

    Google Scholar 

  5. Oran ES, Oh CK, Cybyk BZ. Direct simulation Mont Carlo: recent advances and applications. Ann Rev Fluid Mech. 1998;30(1):403–41.

    Article  Google Scholar 

  6. Kandlikar S, Garimella S, Li D, Colin S, King MR. Heat transfer and flow in minichannels and microchannels. Amsterdam: Elsevier; 2005.

    Google Scholar 

  7. Change CC, Yang TT, Yen TH, Chen COK. Numerical investigation into thermal mixing efficiency in Y-shaped channel using lattice Boltzmann method and field synergy principle. Int J Therm Sci. 2009;48(11):2092–9.

    Article  Google Scholar 

  8. Wang M, He J, Yu J, Pan N. Lettice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Int J Therm Sci. 2007;46(9):848–55.

    Article  Google Scholar 

  9. Xuan Y, Li Q, Ye M. Investigations of convective heat transfer in Ferro fluid microflows using lattice-Boltzmann approach. Int J Therm Sci. 2007;46(2):105–11.

    Article  Google Scholar 

  10. Nie X, Doolen GD, Chen S. Lattice-Boltzmann simulation of fluid flows in MEMS. J Stat Phys. 2002;107:279–89.

    Article  Google Scholar 

  11. Ho C, Tai Y. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech. 1998;30:579–612.

    Article  Google Scholar 

  12. Grucelski A, Pozorski J. Lattice Boltzmann simulation of fluid flow in porous media of temperature—affected geometry. J Theor Appl Mach. 2012;50:193–214.

    Google Scholar 

  13. Kefayati G, Hosseinizadeh S, Gorji M, Sajjadi H. Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int Commun Heat Mass Transf. 2011;38:798–805.

    Article  CAS  Google Scholar 

  14. Yang YT, Lai FH. Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using lattice Boltzmann method. Int Commun Heat Mass Transf. 2011;38:607–14.

    Article  CAS  Google Scholar 

  15. Zhang YH, Qin RS, Sun YH, Barber RW, Emerson DR. Gas flow in microchannels—a lattice Boltzmann method approach. J Stat Phys. 2005;121:257–67.

    Article  Google Scholar 

  16. Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier–Stokes equation. Phys Rev. 1989;56:1505–8.

    Google Scholar 

  17. Buick M. Lattice Boltzmann method in interfacial wave modeling. Ph.D. thesis at University of Edinburgh; 1997.

  18. He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys. 1998;146:283–300.

    Article  Google Scholar 

  19. Guo Z, Shi B, Wang N. Lattice BGK model for incompressible Navier–Stokes equation. J Comput Phys. 2000;165(1):288–306.

    Article  Google Scholar 

  20. D’Orazio A, Corcione M, Celata GP. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int J Therm Sci. 2004;43(6):575–86.

    Article  Google Scholar 

  21. D’Orazio A, Succi S. Simulating two-dimensional thermal channel flows by means of lattice Boltzmann method with new boundary conditions. Future Gener Comput Syst. 2004;20:935–44.

    Article  Google Scholar 

  22. Karimipour A, Nezhad AH, D’Orazio A, Shirani E. Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int J Therm Sci. 2012;54:142–52.

    Article  CAS  Google Scholar 

  23. Kavehpour HP, Faghri M. Effect of compressibility and rarefaction on gaseous flow in microchannels. Numer Heat Transf. 1997;32:677–96.

    Article  CAS  Google Scholar 

  24. Chen S, Doolen G. Lattice Boltzmannn method for fluid flows. Annu Rev Fluid Mech. 1998;30:329–64.

    Article  Google Scholar 

  25. Chen S, Tian Z. Simulation of thermal micro-flow using lattice Boltzmann methods with Langmuir slip model. Int J Heat Fluid Slow. 2010;31:227–35.

    Article  CAS  Google Scholar 

  26. Svea O, Skocek J. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver. J Non Newton Fluid Mech. 2013;199:61–9.

    Article  CAS  Google Scholar 

  27. Monfared AEF, Sarrafi A, Jafari S, Schaffie M. Thermal flux Simulations by lattice Boltzmann method; investigation of high Richardson number cross flows over tandem square cylinders. Int J Heat Mass Transf. 2015;86:563–80.

    Article  Google Scholar 

  28. Li W, Zhou X, Dong B, Sun T. A thermal LBM model for studding complex flow and heat transfer problems in body-fitted coordinates. Int J Therm Sci. 2015;98:266–76.

    Article  Google Scholar 

  29. Yu D, Mei R, Lue LS, Shyy Y. Viscous flow computations in the method of lattice Boltzmann equation. Prog Aerosp Sci. 2003;39:329–67.

    Article  Google Scholar 

  30. Al-Zoubi A, Brenner G. Simulating fluid flow over sinusoidal surfaces using the lattice Boltzmann method. Comput Math Appl. 2008;55:1365–76.

    Article  Google Scholar 

  31. Breuers M, Bernsdorf J, Zeiser T, Durst F. Accurate computations of the laminar flow past a square cylinder based on two different methods; lattice-Boltzmann and finite-volume. Int J Heat Fluid Flow. 2000;21:186–96.

    Article  Google Scholar 

  32. Bouzidi M, Humieres DD, Lallemand P, Lue LS. Lattice Boltzmann equation on two-dimensional rectangular grid. J Comput Phys. 2001;172:704–17.

    Article  CAS  Google Scholar 

  33. Rahmati AR, Tahery AA. Numerical study of nanofluid natural convection in a square cavity with a hot obstacle using lattice Boltzmann method. Alex Eng J. 2017.

  34. Hussain S, Sameh E, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. Int J Heat Mass Transf. 2017;114(2017):1054–66.

    Article  CAS  Google Scholar 

  35. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67.

    Article  CAS  Google Scholar 

  36. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    Article  CAS  Google Scholar 

  37. Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131(3):2975–91.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Sadoughi MK. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int J Heat Mass Transf. 2017;113:106–14.

    Article  CAS  Google Scholar 

  39. Lim CY, Shu C, Niu XD, Chew YT. Application of lattice Boltzmann method to simulate microchannel flows. Phys Fluid. 2002;14:2299–308.

    Article  CAS  Google Scholar 

  40. Sofonea V, Sekerka RF. Boundary conditions for the upwind finite difference Lattice Boltzmann model: evidence of slip velocity in micro channel flow. J Comput Phys. 2005;207:639–59.

    Article  Google Scholar 

  41. Das K, Jana S, Kundu PK. Thermophoretic MHD slip flow over a permeable surface with variable fluid properties. Alex Eng J. 2015;54:35–44.

    Article  Google Scholar 

  42. Shu C, Niu XD, Chew YT. A Lattice Boltzmann kinetic model for micro flow and heat transfer. J Stat Phys. 2005;121:239–55.

    Article  Google Scholar 

  43. Liu X, Guo Z. A lattice Boltzmann study of gas flows in a long micro-channel. Comput Math Appl. 2013;65:186–93.

    Article  Google Scholar 

  44. Yuan Y, Rahman S. Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels. Phys A. 2016;463:25–36.

    Article  CAS  Google Scholar 

  45. Nikkhah Z, Karimipour A, Safaei MR, Forghani-Tehrani P, Goodarzi M, Dahari M, Wongwises S. Forced convective heat transfer of water/functionalized multi-wall carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. Int Commun Heat Mass Transf. 2015;68:69–77.

    Article  CAS  Google Scholar 

  46. Alamyane AA, Mohammad AA. Simulation of forced c convection in channel with extend surface by the lattice Boltzmann method. Comput Math Appl. 2010;59:241–2430.

    Article  Google Scholar 

  47. Verhaeghe F, Luo LS, Blanpain B. Lattice Boltzmann modeling of microchannel flow in slip flow regime. J Comput Phys. 2009;10:147–57.

    Article  Google Scholar 

  48. Zou Q, He X. on pressure and velocity flow boundary conditions and bounce back for the lattice Boltzmann BGK model. Comp Gas. 1996;1:961–1001.

    Google Scholar 

  49. Dorazio A, Arrighettie C, Succi S. Kinetic scheme for fluid flows with heat transfer. Ph.D. thesis, La Spaienza: University of Rom; 2003.

  50. Dehghani Y, Abdollahi A, Karimipour A. Experimental investigation toward obtaining a new correlation for viscosity of WO3 and Al2O3 nanoparticles-loaded nanofluid within aqueous and non-aqueous basefluids. J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7394-5.

    Article  Google Scholar 

  51. Hassani M, Karimipour A. Discrete ordinates simulation of radiative participating nanofluid natural convection in an enclosure. J Therm Anal Calorim: 1–13.

  52. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B Fluids. 2015;49:89–99.

    Article  Google Scholar 

  53. Karimipour A, Nezhad AH, D’Orazio A, Shirani E. The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using lattice Boltzmann method. J Theor Appl Mech. 2013;51(2):447–62.

    Google Scholar 

  54. Afrand M, Rostami S, Akbari M, Wongwises S, Esfe MH, Karimipour A. Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium. Int J Heat Mass Transf. 2015;90:418–26.

    Article  CAS  Google Scholar 

  55. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Therm Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  56. Esfe MH, Arani AAA, Karimiopour A, Esforjani SSM. Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids. Heat Transf Res. 2014;45(3):279–92.

    Google Scholar 

  57. Mahmoodi M, Esfe MH, Akbari M, Karimipour A, Afrand M. Magneto-natural convection in square cavities with a source-sink pair on different walls. Int J Appl Electromagn Mech. 2015;47(1):21–32.

    Article  Google Scholar 

  58. Esfandiary M, Mehmandoust B, Karimipour A, Pakravan HA. Natural convection of Al2O3-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon. Int J Therm Sci. 2016;105:137–58.

    Article  CAS  Google Scholar 

  59. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Phys E. 2017;86:146–53.

    Article  CAS  Google Scholar 

  60. Goodarzi M, Safaei MR, Oztop HF, Karimipour A, Sadeghinezhad E, Dahari M, Kazi SN, Jomhari N. Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium. Sci World J. 2014;2014:761745.

    Article  CAS  Google Scholar 

  61. Toghaniyan A, Zarringhalam M, Akbari OA, Sheikh Shabani GA, Toghraie D. Application of lattice Boltzmann method and spinodal decomposition phenomenon for simulating two-phase thermal flows. Phys A. 2018;509:673–89.

    Article  CAS  Google Scholar 

  62. Jourabian M, Darzi AAR, Toghraie D, Ali Akbari O. Melting process in porous media around two hot cylinders: numerical study using the lattice Boltzmann method. Phys A. 2018;509:316–35.

    Article  CAS  Google Scholar 

  63. Nemati M, Abady ARSN, Toghraie D, Karimipour A. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows. Phys A. 2018;489:65–77.

    Article  CAS  Google Scholar 

  64. Tohidi M, Toghraie D. The effect of geometrical parameters, roughness and the number of nanoparticles on the self-diffusion coefficient in Couette flow in a nanochannel by using of molecular dynamics simulation. Phys B. 2017;518:20–32.

    Article  CAS  Google Scholar 

  65. Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels. Phys E. 2016;84:152–61.

    Article  CAS  Google Scholar 

  66. Rezaei M, Azimian AR, Toghraie D. Molecular dynamics study of an electro-kinetic fluid transport in a charged nanochannel based on the role of the stern layer. Phys A. 2015;426:25–34.

    Article  CAS  Google Scholar 

  67. Rezaei M, Azimian AR, Semiromi DT. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat Mass Transf. 2015;51(5):661–70.

    Article  CAS  Google Scholar 

  68. Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A. 2014;402:150–68.

    Article  CAS  Google Scholar 

  69. Semiromi DT, Azimian AR. Molecular dynamics simulation of nonodroplets with the modified Lennard-Jones potential function. Heat Mass Transf. 2011;47(5):579–88.

    Article  CAS  Google Scholar 

  70. Noorian H, Toghraie D, Azimian AR. The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation. Heat Mass Transf. 2014;50(1):95–104.

    Article  CAS  Google Scholar 

  71. Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Phys E. 2017;93:167–78.

    Article  CAS  Google Scholar 

  72. Esfe MH, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126(2):643–8.

    Article  CAS  Google Scholar 

  73. Semiromi DT, Azimian AR. Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transf. 2012;48(1):141–52.

    Article  CAS  Google Scholar 

  74. Nazari M, Mohebbi R, Kayhani MH. Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: lattice Boltzmann simulation. J Non Newton Fluid Mech. 2014;204:38–49.

    Article  CAS  Google Scholar 

  75. Nazari M, Kayhani MH, Mohebbi R. Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. Int J Mod Phys C. 2013;24(09):1350060.

    Article  CAS  Google Scholar 

  76. Mohebbi R, Nazari M, Kayhani MH. Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. J Appl Mech Tech Phys. 2016;57(1):55–68.

    Article  CAS  Google Scholar 

  77. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.

    Article  CAS  Google Scholar 

  78. Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.

    Article  CAS  Google Scholar 

  79. Mohebbi R, Heidari H. Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities. Int J Mod Phys C. 2017;28(03):1750042.

    Article  CAS  Google Scholar 

  80. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. Int J Mod Phys C. 2018;29(04):1850030.

    Article  Google Scholar 

  81. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):032001.

    Article  CAS  Google Scholar 

  82. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7518-y.

    Article  Google Scholar 

  83. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/j.jtice.2018.07.026.

    Article  Google Scholar 

  84. Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425–35.

    Article  CAS  Google Scholar 

  85. Mohebbi R, Rashidi MM, Izadi M, Sidik NAC, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.

    Article  CAS  Google Scholar 

  86. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.

    Article  CAS  Google Scholar 

  87. Abchouyeh MA, Mohebbi R, Fard OS. Lattice Boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle. Int J Mod Phys C. 2018;29(09):1850079.

    Article  CAS  Google Scholar 

  88. Mohebbi R, Izadi M, Amiri Delouei A, Sajjadi H. Effect of MWCNT-Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7483-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, M., Karimipour, A. & D’Orazio, A. Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside. J Therm Anal Calorim 137, 229–243 (2019). https://doi.org/10.1007/s10973-018-7917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7917-0

Keywords

Navigation