Skip to main content
Log in

Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper studies the generation of entropy and free convective heat transfer of Al2O3/water nanofluid in an inclined enclosure affected by a magnetic field considering radiation effects. There is a circular quadrant at temperature \(T_{\text{h}}\) in the bottom section of the left wall of the enclosure. The right wall of enclosure is kept at a fixed temperature \(T_{\text{c}}\). The other walls are insulated. The governing equations for fluid flow are resolved using the algorithm of SIMPLE. The effect of variations of Rayleigh number (Ra), Hartmann number (Ha), the enclosure angle and concentration of nanoparticles (\(\varphi\)) on the flow field, isothermal field, entropy field, Nusselt number (Nu), Bejan number (Be) and total generation of entropy is investigated. The results indicate that the Nu enhances by 160% and 40% by augmenting the Ra and decreasing the Ha, respectively. Be diminishes by enhancing the Ra and reducing the Ha. The maximum generation of entropy intensifies by 288% and 39% by augmenting the Ra and reducing the Ha, respectively. The highest average Nusselt umber (\({\text{Nu}}_{\text{M}}\)) and an overall generation of entropy occur at the inclination angle of 30°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio

\(B_{0}\) :

MF strength

\(C_{\text{p}}\) :

Specific heat \(({\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1} )\)

G :

Gravity \(({\text{m}}\;{\text{s}}^{ - 2} )\)

H :

Height of enclosure (m)

\({\text{Ha}}\) :

Hartmann number (dimensionless)

K :

Thermal conductivity \(({\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} )\)

\({\text{Nu}}\) :

Nusselt number (dimensionless)

\(P\) :

Pressure \(({\text{kg}}\;{\text{s}}^{ - 2} \;{\text{m}}^{ - 1} )\)

\({ \Pr }\) :

Prandtl number (dimensionless)

R :

Fin width (m)

\({\text{Ra}}\) :

Rayleigh number (dimensionless)

S :

Entropy (W K−1)

\(T\) :

Temperature (K)

\(u\) :

X-component of velocity \(({\text{m}}\;{\text{s}}^{ - 1} )\)

\(v\) :

Y-component of velocity \(({\text{m}}\;{\text{s}}^{ - 1} )\)

\(x,y\) :

Cartesian coordinates \(({\text{m}})\)

Γ :

Angle of cavity (°)

\(\sigma\) :

The electrical conductivity \((\Omega \;{\text{m}})\)

\(\varphi\) :

Solid volume fraction (dimensionless)

\(\alpha\) :

Thermal diffusivity \(({\text{m}}^{2} \;{\text{s}}^{ - 1} )\)

\(\rho\) :

Density \(({\text{kg}}\;{\text{m}}^{ - 3} )\)

\(\mu\) :

Dynamic viscosity \(({\text{kg}}\;{\text{m}}^{ - 1} \;{\text{s}}^{ - 1} )\)

\(\varPsi\) :

Stream function value \(({\text{m}}^{2} \;{\text{s}}^{ - 1} )\)

Λ :

Convection heat transfer coefficient \(({\text{W}}\;{\text{m}}^{ - 2} \;{\text{K}}^{ - 1} )\)

c:

Cold

f:

Fluid (water)

h:

Hot

m:

Average

nf:

NF

p:

Nanoparticle

References

  1. Choudhary S, Sachdeva A, Kumar P. Investigation of the stability of MgO NF and its effect on the thermal performance of flat plate solar collector. Renew Energy. 2020;147:1801–14.

    CAS  Google Scholar 

  2. Hajatzadeh Pordanjani A, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of NFs in heat exchangers for saving energy. Energy Convers Manag. 2019;198:111886.

    CAS  Google Scholar 

  3. Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with distinct flow path shapes using NF. Renew Energy. 2020;146:2316–29.

    CAS  Google Scholar 

  4. Saury D, Rouger N, Djanna F, Penot F. Natural convection in an air-filled cavity: experimental results at large Rayleigh numbers. Int Commun Heat Mass Transf. 2011;38:679–87.

    Google Scholar 

  5. Ampofo F. Turbulent natural convection of air in a non-partitioned or partitioned cavity with distinctially heated vertical and conducting horizontal walls. Exp Thermal Fluid Sci. 2005;29:137–57.

    CAS  Google Scholar 

  6. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  7. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2019;135:1031–45.

    CAS  Google Scholar 

  8. Wang L, Yang X, Huang C, Chai Z, Shi B. Hybrid lattice Boltzmann–TVD simulation of natural convection of NFs in a partially heated square cavity using Buongiorno’s model. Appl Therm Eng. 2019;146:318–27.

    Google Scholar 

  9. Selimefendigil F, Öztop HF. Corrugated conductive partition effects on MHD free convection of CNT–water NF in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    CAS  Google Scholar 

  10. Xu D, Hu Y, Li D. A lattice Boltzmann investigation of two-phase natural convection of Cu–water NF in a square cavity. Case Stud Therm Eng. 2019;13:100358.

    Google Scholar 

  11. Sajjadi H, Delouei AA, Atashafrooz M, Sheikholeslami M. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing NF. Int J Heat Mass Transf. 2018;126:489–503.

    CAS  Google Scholar 

  12. Aghakhani S, Ghasemi B, Hajatzadeh Pordanjani A, Wongwises S, Afrand M. Effect of replacing nanofluid instead of water on heat transfer in a channel with extended surfaces under a magnetic field. Int J Numer Methods Heat Fluid Flow. 2019; https://doi.org/10.1108/HFF-06-2018-0277.

    Article  Google Scholar 

  13. Sheremet MA, Pop I, Mahian O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using NFs: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.

    CAS  Google Scholar 

  14. Astanina M, Abu-Nada E, Sheremet M. Combined effects of thermophoresis, Brownian motion, and NF variable properties on CuO–water NF natural convection in a partially heated square cavity. J Heat Transf. 2018;140:082401.

    Google Scholar 

  15. Pordanjani AH, Aghakhani S, Alnaqi AA, Afrand M. Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a MF: uniform and non-uniform temperature boundary conditions. Int J Mech Sci. 2019;152:99–117.

    Google Scholar 

  16. Pordanjani AH, Vahedi SM, Aghakhani S, Afrand M, Öztop HF, Abu-Hamdeh N. Effect of MF on mixed convection and entropy generation of hybrid NF in an inclined enclosure: sensitivity analysis and optimization. Eur Phys J Plus. 2019;134:412.

    Google Scholar 

  17. Haq RU, Aman S. Water functionalized CuO nanoparticles filled in a partially heated trapezoidal cavity with inner heated obstacle: FEM approach. Int J Heat Mass Transf. 2019;128:401–17.

    CAS  Google Scholar 

  18. Siavashi M, Yousofvand R, Rezanejad S. NF and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv Powder Technol. 2018;29:142–56.

    CAS  Google Scholar 

  19. Saeid NH. Natural convection in a square cavity with discrete heating at the bottom with distinct fin shapes. Heat Transf Eng. 2018;39:154–61.

    CAS  Google Scholar 

  20. Chen H-T, Lin M-C, Chang J-R. Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall. Int J Heat Mass Transf. 2018;124:1217–29.

    Google Scholar 

  21. Sobhani M, Tighchi HA, Esfahani JA. Taguchi optimization of combined radiation/natural convection of participating medium in a cavity with a horizontal fin using LBM. Physica A. 2018;509:1062–79.

    CAS  Google Scholar 

  22. Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A. MHD forced convection flow of NF in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci. 2018;135:532–40.

    Google Scholar 

  23. Ashorynejad HR, Shahriari A. MHD natural convection of hybrid NF in an open wavy cavity. Results Phys. 2018;9:440–55.

    Google Scholar 

  24. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al2O3/H2O NF in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.

    CAS  Google Scholar 

  25. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K. MHD natural convection and entropy generation in an open cavity having distinct horizontal porous blocks saturated with a ferrofluid. J Magn Magn Mater. 2018;452:193–204.

    CAS  Google Scholar 

  26. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of NF flow inside a cavity affected by MF and thermal radiation. J Therm Anal Calorim. 2019;137:997–1019.

    Google Scholar 

  27. Haq RU, Soomro FA, Mekkaoui T, Al-Mdallal QM. MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. Int J Heat Mass Transf. 2018;121:1168–78.

    Google Scholar 

  28. Sheikholeslami M, Shehzad SA, Li Z. Water based NF free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    CAS  Google Scholar 

  29. Sheikholeslami M, Hayat T, Alsaedi A. Numerical simulation for forced convection flow of MHD CuO–H2O NF inside a cavity by means of LBM. J Mol Liq. 2018;249:941–8.

    CAS  Google Scholar 

  30. Pordanjani AH, Jahanbakhshi A, Nadooshan AA, Afrand M. Effect of two isothermal obstacles on the natural convection of NF in the presence of MF inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78.

    CAS  Google Scholar 

  31. Selimefendigil F, Öztop HF. MHD natural convection and entropy generation in a NF-filled cavity with a conductive partition. In: Dincer I, Colpan CO, Kizilkan O, editors. Exergetic, energetic and environmental dimensions. Amsterdam: Elsevier; 2018. p. 763–78.

    Google Scholar 

  32. Sivaraj C, Sheremet MA. MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int J Mech Sci. 2018;149:326–37.

    Google Scholar 

  33. Kefayati GR, Tang H. MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM. Int J Heat Mass Transf. 2018;126:508–30.

    Google Scholar 

  34. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.

    Google Scholar 

  35. Bejan A. Second law analysis in heat transfer. Energy. 1980;5:720–32.

    Google Scholar 

  36. Armaghani T, Kasaeipoor A, Izadi M, Pop I. MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure. Int J Numer Methods Heat Fluid Flow. 2018;28(12):26.

    Google Scholar 

  37. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Google Scholar 

  38. Mansour MA, Siddiqa S, Gorla RSR, Rashad AM. Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3–Cu/water hybrid NF filled with square porous cavity. Therm Sci Eng Prog. 2018;6:57–71.

    Google Scholar 

  39. Rahimi A, Kasaeipoor A, Malekshah EH, Amiri A. Natural convection analysis employing entropy generation and heatline visualization in a hollow L-shaped cavity filled with NF using lattice Boltzmann method-experimental thermo-physical properties. Physica E. 2018;97:82–97.

    CAS  Google Scholar 

  40. Ghasemi K, Siavashi M. MHD NF free convection and entropy generation in porous enclosures with distinct conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    CAS  Google Scholar 

  41. Karatas H, Derbentli T. Natural convection and radiation in rectangular cavities with one active vertical wall. Int J Therm Sci. 2018;123:129–39.

    Google Scholar 

  42. Sheikholeslami M, Li Z, Shamlooei M. NF MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett A. 2018;382:1615–32.

    CAS  Google Scholar 

  43. Miroshnichenko IV, Sheremet MA. Turbulent natural convection combined with thermal surface radiation inside an inclined cavity having local heater. Int J Therm Sci. 2018;124:122–30.

    Google Scholar 

  44. Prasad RS, Singh SN, Gupta AK. A systematic approach for optimal positioning of heated side walls in a side vented open cavity under natural convection and surface radiation. Front Heat Mass Transf (FHMT). 2018;11:15. https://doi.org/10.5098/hmt.11.15

    Article  Google Scholar 

  45. Nia MF, Nassab SAG, Ansari AB. Transient combined natural convection and radiation in a double space cavity with conducting walls. Int J Therm Sci. 2018;128:94–104.

    Google Scholar 

  46. Lugarini A, Franco AT, Junqueira SLM, Lage JL. Natural convection and surface radiation in a heated wall. C-shaped fracture. J Heat Transf. 2018;140:082501–082501-9.

    Google Scholar 

  47. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of NF inside a shallow cavity by lattice Boltzmann method. Physica A Stat Mech Appl. 2018;509:515–35.

    CAS  Google Scholar 

  48. Taghizadeh A, Taghizadeh M, Azimi M, Alsagri AS, Alrobaian AA, Afrand M. Influence of cerium oxide nanoparticles on thermal conductivity of antifreeze. J Therm Anal Calorim. 2020;139(1):225–36.

    CAS  Google Scholar 

  49. Al-Rashed AA, Sheikhzadeh GA, Aghaei A, Monfared F, Shahsavar A, Afrand M. Effect of a porous medium on flow and mixed convection heat transfer of NFs with variable properties in a trapezoidal enclosure. J Therm Anal Calorim. 2020;139(1):741–54.

    CAS  Google Scholar 

  50. Esfe MH, Afrand M. An updated review on the NFs characteristics. J Therm Anal Calorim. 2019;138(6):4091–101.

    CAS  Google Scholar 

  51. Alsarraf J, Rahmani R, Shahsavar A, Afrand M, Wongwises S, Tran MD. Effect of MF on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid NF in a heated tube. J Therm Anal Calorim. 2019;137(5):1809–25.

    CAS  Google Scholar 

  52. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of NF flow inside a cavity affected by MF and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019.

    Google Scholar 

  53. Nadooshan AA, Esfe MH, Afrand M. Prediction of rheological behavior of SiO2–MWCNTs/10W40 hybrid nanolubricant by designing neural network. J Therm Anal Calorim. 2018;131(3):2741–8.

    Google Scholar 

  54. Esfe MH, Afrand M. Mathematical and artificial brain structure-based modeling of heat conductivity of water based NF enriched by double wall carbon nanotubes. Physica A. 2020;540:120766.

    Google Scholar 

  55. Toghraie D, Sina N, Jolfaei NA, Hajian M, Afrand M. Designing an artificial neural network (ANN) to predict the viscosity of silver/ethylene glycol NF at distinct temperatures and volume fraction of nanoparticles. Physica A. 2019;534:122142.

    CAS  Google Scholar 

  56. Alnaqi AA, Aghakhani S, Pordanjani AH, Bakhtiari R, Asadi A, Tran M-D. Effects of MF on the convective heat transfer rate and entropy generation of a NF in an inclined square cavity equipped with a conductor fin: considering the radiation effect. Int J Heat Mass Transf. 2019;133:256–67.

    CAS  Google Scholar 

  57. Sheikholeslami M, Ganji DD. Entropy generation of NF in presence of MF using Lattice Boltzmann Method. Physica A. 2015;417:273–86.

    CAS  Google Scholar 

  58. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three NFs and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.

    CAS  Google Scholar 

  59. Maxwell JC, Thompson JJ. A treatise on electricity and magnetism, vol. 2. New York: Clarendon; 1904.

    Google Scholar 

  60. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    CAS  Google Scholar 

  61. Patankar S. Numerical heat transfer and fluid flow. Boca raton: CRC Press; 1980.

    Google Scholar 

  62. Ghasemi B, Aminossadati S, Raisi A. MF effect on natural convection in a NF-filled square enclosure. Int J Therm Sci. 2011;50:1748–56.

    CAS  Google Scholar 

  63. Krane RJ, Jessee J. Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: Proceedings of the first ASME–JSME thermal engineering joint conference, vol. 1; 1983. pp. 323–329.

  64. Oliveski RDC, Macagnan MH, Copetti JB. Entropy generation and natural convection in rectangular cavities. Appl Therm Eng. 2009;29:1417–25.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51979215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iskander Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Yaghoubi, S., Dezfulizadeh, A. et al. Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J Therm Anal Calorim 141, 635–648 (2020). https://doi.org/10.1007/s10973-020-09497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09497-y

Keywords

Navigation