Skip to main content
Log in

Influence of nanoparticles size, per cent mass ratio, and temperature on the thermal properties of water-based MgO–ZnO nanofluid: an experimental approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper experiments the trio influence of nanoparticles size (NS), per cent mass ratio (PWR), and temperature (T) on the thermal properties of MgO–ZnO/deionised water (DIW) nanofluids. MgO nanoparticles (20 nm and 100 nm) were hybridised with ZnO nanoparticles (20 nm) and suspended in DIW to formulate 0.1 vol% hybrid nanofluids at PWRs of 20:80, 40:60, 60:40, and 80:20 (MgO/ZnO). The pH, electrical conductivity (σ), viscosity (μ), and thermal conductivity (κ) of the hybrid nanofluids were experimentally determined at temperatures of 20–50 °C. The stability was monitored, while the morphology was examined using standard instruments. Findings showed that the suspension of the hybrid nanoparticles enhanced the pH and thermal properties of DIW. The hybrid nanofluids with 100 nm-MgO nanoparticles were observed to possess slightly higher values of pH, σ, and μ than those with 20 nm-MgO nanoparticles except for κ. An increase in temperature augmented κ and σ of MgO–ZnO/DIW nanofluids, while it detracted pH and μ. Maximum enhancements of 453.70–550.62% (40:60), 14.95–22.33% (40:60), and 8.29–17.46% (60:40) were evaluated for σ, κ, and μ, respectively. The influence of PWR, NS, and temperature on the σ, κ, μ, and pH of the hybrid nanofluids was in the order of PWR > NS > T, NS > PWR > T, T > NS > PWR, and T > NS > PWR, respectively. Subject to the experimental data obtained, correlations were developed for each hybrid nanofluid and thermal property as a function of temperature. The MgO–ZnO/DIW nanofluids with a 40:60 PWR appeared to be the best in terms of heat transfer capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

AAD:

Average absolute deviation

AAE:

Average absolute error

Ag:

Silver nanoparticles

Al:

Aluminium nanoparticles

Al2O3 :

Aluminium oxide nanoparticles

Au:

Gold nanoparticles

CMC:

Critical micelle concentration

Co3O4 :

Cobalt(III) oxide nanoparticles

Cu:

Copper nanoparticles

CuO:

Copper oxide nanoparticles

C κ :

Effective thermal conductivity enhancement

C μ :

Effective viscosity enhancement

DIW:

Deionised water

DW:

Distilled water

EG:

Ethylene glycol

Fe2O3 :

Iron(III) oxide nanoparticles

Fe3O4 :

Iron(IV) oxide nanoparticles

FF:

Ferrofluid

GNP:

Graphene nanoplatelets

GO:

Graphene oxide

h:

Hour

M :

Mass (kg)

MgO:

Magnesium oxide nanoparticles

MWCNT:

Multiwalled carbon nanoparticle

ND:

Nanodiamond

Ni:

Nickel nanoparticles

NS:

Nanosize (nm)

PER:

Property enhancement ratio

PWR:

Per cent mass ratio

SDS:

Sodium dodecyl sulphate

SiO2 :

Silicon oxide nanoparticles

T :

Temperature (°C)

TEC:

Thermoelectrical conductivity

TiO2 :

Titanium oxide nanoparticles

TO:

Transformer oil

W :

Water

X :

Per cent mass ratio

ZnO:

Zinc oxide nanoparticles

κ r :

Relative thermal conductivity

μ r :

Relative viscosity

φ :

Volume concentration (vol%)

μ :

Viscosity (mPa s)

κ :

Thermal conductivity (W m−1 K−1)

σ :

Electrical conductivity (mS cm−1)

ρ :

Density (g cm−3)

hnf:

Hybrid nanofluid

nf:

Nanofluid

bf:

Base fluid

References

  1. Abdelrazek AH, Kazi SN, Alawi OA, Yusoff N, Oon CS, Ali HM. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2020;139(3):1637–53. https://doi.org/10.1007/s10973-019-08562-5.

    Article  CAS  Google Scholar 

  2. Ali HM. In tube convection heat transfer enhancement: SiO2 aqua based nanofluids. J Mol Liq. 2020;308:113031. https://doi.org/10.1016/j.molliq.2020.113031.

    Article  CAS  Google Scholar 

  3. Tariq HA, Anwar M, Ali HM, Ahmed J. Effect of dual flow arrangements on the performance of mini-channel heat sink: numerical study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09617-8.

    Article  Google Scholar 

  4. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137(4):1279–94. https://doi.org/10.1007/s10973-019-08043-9.

    Article  CAS  Google Scholar 

  5. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2018;2019(103):556–92. https://doi.org/10.1016/j.rser.2018.12.057.

    Article  CAS  Google Scholar 

  6. Khan MS, Yan M, Ali HM, Amber KP, Bashir MA, Akbar B, Javed S. Comparative performance assessment of different absorber tube geometries for parabolic trough solar collector using nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09590-2.

    Article  Google Scholar 

  7. Yang L, Ji W, Mao M, Huang J. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.120408.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ur Rehman T, Ali HM. Experimental study on the thermal behavior of RT-35HC paraffin within copper and iron-nickel open cell foams: energy storage for thermal management of electronics. Int J Heat Mass Transf. 2020;146:118852. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118852.

    Article  CAS  Google Scholar 

  9. Sajawal M, Rehman TU, Ali HM, Sajjad U, Raza A, Bhatti MS. Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater. Case Stud Therm Eng. 2019;15:100543. https://doi.org/10.1016/j.csite.2019.100543.

    Article  Google Scholar 

  10. ur Rehman T, Ali HM. Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim. 2020;140(3):979–90. https://doi.org/10.1007/s10973-019-08961-8.

    Article  CAS  Google Scholar 

  11. ur Rehman T, Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transf. 2018;98:155–62. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.003.

    Article  CAS  Google Scholar 

  12. Ghaffarkhah A, Afrand M, Talebkeikhah M, Sehat AA, Moraveji MK, Talebkeikhah F, Arjmand M. On evaluation of thermophysical properties of transformer oil-based nanofluids: a comprehensive modeling and experimental study. J Mol Liq. 2020;300:112249. https://doi.org/10.1016/j.molliq.2019.112249.

    Article  CAS  Google Scholar 

  13. Kilic M, Ali HM. Numerical investigation of combined effect of nanofluids and multiple impinging jets on heat transfer. Therm Sci. 2018;2018:1–12. https://doi.org/10.2298/TSCI171204094K.

    Article  Google Scholar 

  14. ur Rehman T, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf. 2018;127:381–93. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.120.

    Article  CAS  Google Scholar 

  15. ur Rehman T, Ali HM, Janjua MM, Sajjad U, Yan WM. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.001.

    Article  Google Scholar 

  16. Mubeen I, Shengyong L, Jianhua Y, Khan MS, Yan M, Ali HM. Effect of milling material on characteristics and reactivity of mechanically treated fly ash to produce PCDD/F. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09509-x.

    Article  Google Scholar 

  17. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, Ahmad Z. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O–ethylene glycol mixture. J Therm Anal Calorim. 2019;138(5):3007–21. https://doi.org/10.1007/s10973-019-08320-7.

    Article  CAS  Google Scholar 

  18. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  19. Pourpasha H, Zeinali Heris S, Mahian O, Wongwises S. The effect of multi-wall carbon nanotubes/turbine meter oil nanofluid concentration on the thermophysical properties of lubricants. Powder Technol. 2020;367:133–42. https://doi.org/10.1016/j.powtec.2020.03.037.

    Article  CAS  Google Scholar 

  20. Parsa SM, Rahbar A, Koleini MH, Aberoumand S, Afrand M, Amidpour M. A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination. 2020;480:114354. https://doi.org/10.1016/j.desal.2020.114354.

    Article  CAS  Google Scholar 

  21. Parsa SM, Rahbar A, Javadi YD, Koleini MH, Afrand M, Amidpour M. Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000 m: altitude concept. J Clean Prod. 2020;261:121243. https://doi.org/10.1016/j.jclepro.2020.121243.

    Article  Google Scholar 

  22. Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, Zhang X, Norris PM, Markides CN, Mahian O. A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys Rep. 2019. https://doi.org/10.1016/j.physrep.2019.12.001.

    Article  Google Scholar 

  23. Chopkar M, Kumar S, Bhandari DR, Das PK, Manna I. Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid. Mater Sci Eng B Solid-State Mater Adv Technol. 2007;139(2–3):141–8. https://doi.org/10.1016/j.mseb.2007.01.048.

    Article  CAS  Google Scholar 

  24. Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462(1–2):45–55. https://doi.org/10.1016/j.tca.2007.06.009.

    Article  CAS  Google Scholar 

  25. Jha N, Ramaprabhu S. Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids. J Phys Chem C. 2008;112(25):9315–9. https://doi.org/10.1021/jp8017309.

    Article  CAS  Google Scholar 

  26. Chen LF, Cheng M, Yang DJ, Yang L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater. 2014;548–549:118–23. https://doi.org/10.4028/www.scientific.net/AMM.548-549.118.

    Article  CAS  Google Scholar 

  27. Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A. Investigation of Fe3O4/graphene nanohybrid heat transfer properties: experimental approach. Int Commun Heat Mass Transf. 2017;87:30–9. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.012.

    Article  CAS  Google Scholar 

  28. Chen L, Yu W, Xie H. Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites. Powder Technol. 2012;231:18–20. https://doi.org/10.1016/j.powtec.2012.07.028.

    Article  CAS  Google Scholar 

  29. Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int. 2013;39(4):3885–91. https://doi.org/10.1016/j.ceramint.2012.10.232.

    Article  CAS  Google Scholar 

  30. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10. https://doi.org/10.1016/J.TCA.2015.08.025.

    Article  CAS  Google Scholar 

  31. Syam Sundar L, Singh MK, Ferro MC, Sousa ACM. Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids. Int Commun Heat Mass Transf. 2017;84:1–10. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.001.

    Article  CAS  Google Scholar 

  32. Sundar LS, Venkata Ramana E, Graça MPF, Singh MK, Sousa ACM. Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int Commun Heat Mass Transf. 2016;73:62–74. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.013.

    Article  CAS  Google Scholar 

  33. Syam Sundar L, Sousa ACM, Singh MK. Heat transfer enhancement of low volume concentration of carbon nanotube-Fe3O4/water hybrid nanofluids in a tube with twisted tape inserts under turbulent flow. J Therm Sci Eng Appl. 2015;7(2):021015. https://doi.org/10.1115/1.4029622.

    Article  CAS  Google Scholar 

  34. Sundar LS, Irurueta GO, Venkata Ramana E, Singh MK, Sousa ACM. Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND-Co3O4) nanocomposite. Case Stud Therm Eng. 2016;7:66–77. https://doi.org/10.1016/J.CSITE.2016.03.001.

    Article  Google Scholar 

  35. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73. https://doi.org/10.1016/j.powtec.2017.10.025.

    Article  CAS  Google Scholar 

  36. Hemmat Esfe M, Saedodin S, Yan WM, Afrand M, Sina N. Erratum to: study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;125(1):565. https://doi.org/10.1007/s10973-016-5423-9.

    Article  CAS  Google Scholar 

  37. Sundar LS, Singh MK, Sousa ACM. Turbulent heat transfer and friction factor of nanodiamond-nickel hybrid nanofluids flow in a tube: an experimental study. Int J Heat Mass Transf. 2018;117:223–34. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.109.

    Article  CAS  Google Scholar 

  38. Megatif L, Ghozatloo A, Arimi A, Shariati-Niasar M. Investigation of laminar convective heat transfer of a novel TiO2-carbon nanotube hybrid water-based nanofluid. Exp Heat Transf. 2016;29(1):124–38. https://doi.org/10.1080/08916152.2014.973974.

    Article  CAS  Google Scholar 

  39. Ebrahimi S, Saghravani SF. Experimental study of the thermal conductivity features of the water based Fe3O4/CuO nanofluid. Heat Mass Transf. 2018;54:999–1008. https://doi.org/10.1016/j.jmmm.2017.05.090.

    Article  CAS  Google Scholar 

  40. Rostami S, Nadooshan AA, Raisi A. An experimental study on the thermal conductivity of new antifreeze containing copper oxide and graphene oxide nano-additives. Powder Technol. 2019;345:658–67. https://doi.org/10.1016/j.powtec.2019.01.055.

    Article  CAS  Google Scholar 

  41. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9. https://doi.org/10.1016/j.applthermaleng.2016.09.024.

    Article  CAS  Google Scholar 

  42. Rostami S, Ahmadi Nadooshan A, Raisi A. The effect of hybrid nano-additive consists of graphene oxide and copper oxide on rheological behavior of a mixture of water and ethylene glycol. J Therm Anal Calorim. 2020;139(3):2353–64. https://doi.org/10.1007/s10973-019-08569-y.

    Article  CAS  Google Scholar 

  43. Sundar LS, Shusmitha K, Singh MK, Sousa ACM. Electrical conductivity enhancement of nanodiamond-nickel (ND-Ni) nanocomposite based magnetic nanofluids. Int Commun Heat Mass Transf. 2014;57:1–7. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.003.

    Article  CAS  Google Scholar 

  44. Qing SH, Rashmi W, Khalid M, Gupta TCSM, Nabipoor M, Hajibeigy MT. Thermal conductivity and electrical properties of hybrid SiO2-graphene naphthenic mineral oil nanofluid as potential transformer oil. Mater Res Express. 2017;4(1):015504. https://doi.org/10.1088/2053-1591/aa550e.

    Article  CAS  Google Scholar 

  45. Aparna Z, Michael M, Pabi SK, Ghosh S. Thermal conductivity of aqueous Al2O3/Ag hybrid nano fluid at different temperatures and volume concentrations: an experimental investigation and development of new correlation function. Powder Technol. 2019;343:714–22. https://doi.org/10.1016/j.powtec.2018.11.096.

    Article  CAS  Google Scholar 

  46. Hamid KA, Azmi WH, Nabil MF, Mamat R, Sharma KV. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2–SiO2 nanofluids. Int J Heat Mass Transf. 2018;116:1143–52. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.087.

    Article  CAS  Google Scholar 

  47. Siddiqui FR, Tso CY, Chan KC, Fu SC, Chao CYH. On trade-off for dispersion stability and thermal transport of Cu–Al2O3 hybrid nanofluid for various mixing ratios. Int J Heat Mass Transf. 2019;132:1200–16. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.094.

    Article  CAS  Google Scholar 

  48. Mousavi SM, Esmaeilzadeh F, Wang XP. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid experimental investigation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08006-0.

    Article  Google Scholar 

  49. Popiel CO, Wojtkowiak J. Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 °C to 150 °C). Heat Transf Eng. 1998;19(3):87–101. https://doi.org/10.1080/01457639808939929.

    Article  CAS  Google Scholar 

  50. Abdolbaqi MK, Mamat R, Sidik NAC, Azmi WH, Selvakumar P. Experimental investigation and development of new correlations for heat transfer enhancement and friction factor of bioglycol/water based TiO2 nanofluids in flat tubes. Int J Heat Mass Transf. 2017;108:1026–35. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.024.

    Article  CAS  Google Scholar 

  51. Abdolbaqi MK, Azmi WH, Mamat R, Sharma KV, Najafi G. Experimental investigation of thermal conductivity and electrical conductivity of bioglycol–water mixture based Al2O3 nanofluid. Appl Therm Eng. 2016;102:932–41. https://doi.org/10.1016/j.applthermaleng.2016.03.074.

    Article  CAS  Google Scholar 

  52. Sharker KK, Islam MN, Das S. Counterion effect on krafft temperature and related properties of octadecyltrimethylammonium bromide. J Surfactants Deterg. 2017;20(4):923–32. https://doi.org/10.1007/s11743-017-1957-5.

    Article  CAS  Google Scholar 

  53. Topallar H, Karadag B. Mechanism of micelle formation in sodium dodecyl sulfate and cetyltrimethylammonium bromide. J Surfactants Deterg. 1998;1(1):49–51. https://doi.org/10.1007/s11743-998-0007-5.

    Article  CAS  Google Scholar 

  54. Adio SA, Sharifpur M, Meyer JP. Factors affecting the PH and electrical conductivity of MgO-ethylene glycol nanofluids. Bull Mater Sci. 2015;38(5):1345–57. https://doi.org/10.1007/s12034-015-1020-y.

    Article  CAS  Google Scholar 

  55. Adio SA, Sharifpur M, Meyer JP. Investigation into effective viscosity, electrical conductivity, and PH of γ-Al2O3–glycerol nanofluids in einstein concentration regime. Heat Transf Eng. 2015;36(14–15):1241–51. https://doi.org/10.1080/01457632.2015.994971.

    Article  CAS  Google Scholar 

  56. Afzal A, Khan SA, Ahamed Saleel C. Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/ab5013.

    Article  Google Scholar 

  57. Adio SA, Mehrabi M, Sharifpur M, Meyer JP. Experimental investigation and model development for effective viscosity of MgO–ethylene glycol nanofluids by using dimensional analysis, FCM-ANFIS and GA-PNN techniques. Int Commun Heat Mass Transf. 2016;72:71–83. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.005.

    Article  CAS  Google Scholar 

  58. Sharifpur M, Adio SA, Meyer JP. Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transf. 2015;68:208–19. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.002.

    Article  CAS  Google Scholar 

  59. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09372-w.

    Article  Google Scholar 

  60. Akilu S, Baheta AT, Chowdhury S, Padmanabhan E, Sharma KV. Thermophysical profile of SiC–CuO/C nanocomposite in base liquid ethylene glycol. Powder Technol. 2019;354:540–51. https://doi.org/10.1016/j.powtec.2019.04.061.

    Article  CAS  Google Scholar 

  61. Giwa SO, Sharifpur M, Meyer JP. Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3–MWCNT/water in a differentially heated square cavity. Int J Heat Mass Transf. 2020;148:119072. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119072.

    Article  CAS  Google Scholar 

  62. Asadi A, Pourfattah F. Heat transfer performance of two oil-based nano fluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 2019;343:296–308. https://doi.org/10.1016/j.powtec.2018.11.023.

    Article  CAS  Google Scholar 

  63. Meyer JP, Adio SA, Sharifpur M, Nwosu PN. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng. 2016;37(5):387–421. https://doi.org/10.1080/01457632.2015.1057447.

    Article  CAS  Google Scholar 

  64. Giwa SO, Sharifpur M, Meyer JP. Effects of uniform magnetic induction on heat transfer performance of aqueous hybrid ferrofluid in a rectangular cavity. Appl Therm Eng. 2020;170:115004. https://doi.org/10.1016/j.applthermaleng.2020.115004.

    Article  CAS  Google Scholar 

  65. Heyhat MM, Irannezhad A. Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids. J Mol Liq. 2018;268:169–75. https://doi.org/10.1016/j.molliq.2018.07.022.

    Article  CAS  Google Scholar 

  66. Mehrali M, Sadeghinezhad E, Rashidi MM, Akhiani AR, Tahan Latibari S, Mehrali M, Metselaar HSC. Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. J Nanopart Res. 2015;17(6):1–17. https://doi.org/10.1007/s11051-015-3062-x.

    Article  Google Scholar 

  67. Ganguly S, Sikdar S, Basu S. Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol. 2009;196(3):326–30. https://doi.org/10.1016/j.powtec.2009.08.010.

    Article  CAS  Google Scholar 

  68. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Abdel Aziz RE. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016;12(3):227–34. https://doi.org/10.1016/j.hbrcj.2014.12.001.

    Article  Google Scholar 

  69. Jamilpanah P, Pahlavanzadeh H, Kheradmand A. Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure. Heat Mass Transf. 2017;53(4):1343–54. https://doi.org/10.1007/s00231-016-1891-5.

    Article  CAS  Google Scholar 

  70. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT–CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67. https://doi.org/10.1007/s10973-017-6213-8.

    Article  CAS  Google Scholar 

  71. Moldoveanu GM, Minea AA, Huminic G, Huminic A. Al2O3/TiO2 hybrid nanofluids thermal conductivity: an experimental approach. J Therm Anal Calorim. 2019;137(2):583–92. https://doi.org/10.1007/s10973-018-7974-4.

    Article  CAS  Google Scholar 

  72. Taherialekouhi R, Rasouli S, Khosravi A. An experimental study on stability and thermal conductivity of water–graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int J Heat Mass Transf. 2019;145:118751. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118751.

    Article  CAS  Google Scholar 

  73. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89(13):1–4. https://doi.org/10.1063/1.2356113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharifpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, S.O., Momin, M., Nwaokocha, C.N. et al. Influence of nanoparticles size, per cent mass ratio, and temperature on the thermal properties of water-based MgO–ZnO nanofluid: an experimental approach. J Therm Anal Calorim 143, 1063–1079 (2021). https://doi.org/10.1007/s10973-020-09870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09870-x

Keywords

Navigation