Skip to main content
Log in

Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Present experimental investigation focuses on the performance analysis of metallic foam and phase change material (PCM)-based heat sink at variable heat loads. High porosity (97%) copper and nickel foams are used with PCM (RT-54HC) to enhance the surface area for the heat transfer. Experimental results reveal that metallic foam-based heat sink embedded with PCM can reduce the base temperature of the heat sink efficiently. Copper foam is recognized to be more promising when compared to nickel foam in lowering base temperature for all heat loads (8 W, 16 W and 24 W). It was found that copper foam embedded with 0.8 volume fraction of PCM reduced the base temperature by 26% as compared to that of nickel foam without PCM at 24 W. Furthermore, when the PCM fraction is increased, final temperature of the heat sink gets lessened at the end of charging process while discharging process remains almost intact. So, in this study, copper foam with 0.8 volume fraction is determined to be an optimized configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

I :

Current

L :

Length of heating surface

\(m_{\text{PCM}}\) :

Mass of PCM

q :

Heat flux

V :

Voltage

\(V_{\text{S}}\) :

Volume of heat sink

W :

Width of heating surface

PCM:

Phase change material

PPI:

Pores per inch

SEM:

Scanning electron microscope

ε :

Porosity

\(\psi_{\text{PCM}}\) :

Volume fraction of PCM

References

  1. Queipo N, Devarakonda R, Humphrey JAC. Genetic algorithms for thermosciences research: application to the optimized cooling of electronic components. Int J Heat Mass Transf. 1994;37(6):893–908.

    Article  Google Scholar 

  2. Rehman T, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transfer. 2018;127:381–93.

    Article  CAS  Google Scholar 

  3. Farzanehnia A, Khatibi M, Sardarabadi M, Passandideh-Fard M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers Manag. 2019;179:314–25.

    Article  CAS  Google Scholar 

  4. Mustaffar A, Reay D, Harvey A. The melting of salt hydrate phase change material in an irregular metal foam for the application of traction transient cooling. Therm Sci Eng Prog. 2018;5:454–65.

    Article  Google Scholar 

  5. Hu X, Wan H, Patnaik SS. Numerical modeling of heat transfer in open-cell micro-foam with phase change material. Int J Heat Mass Transf. 2015;88:617–26.

    Article  Google Scholar 

  6. Gopalan KS, Eswaran V. Numerical investigation of thermal performance of PCM based heat sink using structured porous media as thermal conductivity enhancers. Int J Therm Sci. 2016;104:266–80.

    Article  Google Scholar 

  7. Tomizawa Y, Sasaki K, Kuroda A, Takeda R, Kaito Y. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices. Appl Therm Eng. 2016;98:320–9.

    Article  CAS  Google Scholar 

  8. Shang B, Jinyan H, Run H, Cheng J, Luo X. Modularized thermal storage unit of metal foam/paraffin composite. Int J Heat Mass Transf. 2018;125:596–603.

    Article  CAS  Google Scholar 

  9. Zhu Z-Q, Huang Y-K, Nan H, Zeng Y, Fan L-W. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio. Appl Therm Eng. 2018;128:966–72.

    Article  Google Scholar 

  10. Zhang P, Meng ZN, Zhu H, Wang YL, Peng SP. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy. 2017;185:1971–83.

    Article  CAS  Google Scholar 

  11. Deng Z, Liu X, Zhang C, Huang Y, Chen Y. Melting behaviors of PCM in porous metal foam characterized by fractal geometry. Int J Heat Mass Transf. 2017;113:1031–42.

    Article  CAS  Google Scholar 

  12. Mahdi JM, Nsofor EC. Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Energy. 2017;126:501–12.

    Article  Google Scholar 

  13. Wang H, Wang F, Li Z, Tang Y, Binhai Yu, Yuan W. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material. Appl Energy. 2016;176:221–32.

    Article  CAS  Google Scholar 

  14. Feng S, Li F, Zhang F, Lu TJ. Natural convection in metal foam heat sinks with open slots. Exp Therm Fluid Sci. 2018;91:354–62.

    Article  Google Scholar 

  15. Beer M, Rybár R, Kaľavský M. Experimental heat transfer analysis of open cell hollow ligament metal foam at low Reynolds number. Measurement. 2019;133:214–21.

    Article  Google Scholar 

  16. Kotresha B, Gnanasekaran N. Analysis of forced convection heat transfer through graded ppi metal foams. Numer Heat Transf Fluid Flow. 2019;2019:151–8.

    Article  Google Scholar 

  17. Al-Jethelah M, Ebadi S, Venkateshwar K, Tasnim SH, Mahmud S, Dutta A. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: an experimental investigation. Appl Therm Eng. 2019;148:1029–42.

    Article  CAS  Google Scholar 

  18. Martinelli M, Bentivoglio F, Caron-Soupart A, Couturier R, Fourmigue J-F, Marty P. Experimental study of a phase change thermal energy storage with copper foam. Appl Therm Eng. 2016;101:247–61.

    Article  CAS  Google Scholar 

  19. Dinesh BVS, Bhattacharya A. Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems. Int J Heat Mass Transf. 2019;134:866–83.

    Article  Google Scholar 

  20. Zhu F, Zhang C, Gong X. Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite. Appl Therm Eng. 2016;109:373–83.

    Article  Google Scholar 

  21. Alipanah M, Li X. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. Int J Heat Mass Transf. 2016;102:1159–68.

    Article  CAS  Google Scholar 

  22. Ling Z, Wang F, Fang X, Gao X, Zhang Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl Energy. 2015;148:403–9.

    Article  CAS  Google Scholar 

  23. Fathabadi H. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles. Energy. 2014;70:529–38.

    Article  CAS  Google Scholar 

  24. Xie Y, Tang J, Shi S, Xing Y, Hongwei W, Zhongliang H, Wen D. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials. Energy Convers Manag. 2017;154:562–75.

    Article  Google Scholar 

  25. Zou D, Ma X, Liu X, Zheng P, Yunping H. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int J Heat Mass Transf. 2018;120:33–41.

    Article  CAS  Google Scholar 

  26. Samimi F, Babapoor A, Azizi M, Karimi G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy. 2016;96:355–71.

    Article  CAS  Google Scholar 

  27. Malik M, Dincer I, Rosen MA. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. Int J Energy Res. 2016;40(8):1011–31.

    Article  CAS  Google Scholar 

  28. Greco A, Jiang X. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite. J Power Sources. 2016;315:127–39.

    Article  CAS  Google Scholar 

  29. Al-Zareer M, Dincer I, Rosen MA. A novel phase change based cooling system for prismatic lithium ion batteries. Int J Refrig. 2018;86:203–17.

    Article  CAS  Google Scholar 

  30. Al-Zareer M, Dincer I, Rosen MA. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. J Power Sources. 2017;363:291–303.

    Article  CAS  Google Scholar 

  31. Zhao R, Junjie G, Liu J. Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design. Energy. 2017;135:811–22.

    Article  CAS  Google Scholar 

  32. Lazrak A, Fourmigué J-F, Robin J-F. An innovative practical battery thermal management system based on phase change materials: numerical and experimental investigations. Appl Therm Eng. 2018;128:20–32.

    Article  Google Scholar 

  33. Malik M, Dincer I, Rosen M, Fowler M. Experimental investigation of a new passive thermal management system for a Li-ion battery pack using phase change composite material. Electrochim Acta. 2017;257:345–55.

    Article  CAS  Google Scholar 

  34. Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources. 2017;340:51–9.

    Article  CAS  Google Scholar 

  35. Rehman T-u, Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transfer. 2018;98:155–62.

    Article  CAS  Google Scholar 

  36. Rehman T, Ali HM, Janjua MM, Sajjad U, Yan W-M. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Transfer. 2019;135:649–73.

    Article  CAS  Google Scholar 

  37. Adeel A, et al. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112(2017):143–55.

    Google Scholar 

  38. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17.

    Article  Google Scholar 

  39. Tian Y, Zhao CY. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy. 2011;36(9):5539–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, Tu., Ali, H.M. Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim 140, 979–990 (2020). https://doi.org/10.1007/s10973-019-08961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08961-8

Keywords

Navigation