Skip to main content
Log in

The effect of hybrid nano-additive consists of graphene oxide and copper oxide on rheological behavior of a mixture of water and ethylene glycol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current experimental investigation, the rheological behavior of antifreeze containing a grouping of graphene oxide (GO) and copper oxide (CuO) in temperatures from 25 to 50 °C was evaluated. Homogeneous and stable samples with dissimilar solid volume fractions were prepared by dispersing GO and CuO in an equal mixture of water and ethylene glycol consuming a two-step method. The results showed that the base fluid has Newtonian behavior. Such behavior was also observed for the nanofluid with the volume fractions up to 0.4%. However, for higher concentrations than 0.4 vol.%, the viscosity decreased by increasing the shear rate. This demonstrates that the existing hybrid nanofluid has a non-Newtonian behavior (power-law pseudoplastic fluid). Consequently, with the purpose of facilitating the calculation of the viscosity of the nanofluid, a correlation was derived at the temperature range of 25–50 °C and the volume fractions of 0.1, 0.2 and 0.4% through a curve fitting technique. In addition, not only the consistency index but also the power-law indexes were gained for non-Newtonian samples exerting the curve fitting technique. Comparisons between the correlation output and experimental data expressed the accurateness of anticipated correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  2. Ghasemi A, Hassani M, Goodarzi M, Afrand M, Manafi S. Appraising influence of COOH-MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network. Phys A. 2019;514:36–45.

    Article  CAS  Google Scholar 

  3. Izadi F, Ranjbarzadeh R, Kalbasi R, Afrand M. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid. Phys E. 2018;98:83–9.

    Article  CAS  Google Scholar 

  4. Moradikazerouni A, Hajizadeh A, Safaei MR, Afrand M, Yarmand H, Zulkifli NWBM. Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys A. 2019;521:138–45.

    Article  CAS  Google Scholar 

  5. Nafchi PM, Karimipour A, Afrand M. The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties. Phys A. 2019;516:1–18.

    Article  CAS  Google Scholar 

  6. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  7. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  8. Esfe MH, Afrand M. An updated review on the nanofluids characteristics. J Therm Anal Calorim. 2019 (in Press).

  9. Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135:981–1008.

    Article  CAS  Google Scholar 

  10. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    Article  CAS  Google Scholar 

  11. Rostami S, Nadooshan AA, Raisi A. An experimental study on the thermal conductivity of new antifreeze containing copper oxide and graphene oxide nano-additives. Powder Technol. 2019;345:658–67.

    Article  CAS  Google Scholar 

  12. Amani M, Amani P, Kasaeian A, Mahian O, Kasaeian F, Wongwises S. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field. J Magn Magn Mater. 2017;428:457–63.

    Article  CAS  Google Scholar 

  13. Amani M, Amani P, Mahian O, Estellé P. Multi-objective optimization of thermophysical properties of eco-friendly organic nanofluids. J Clean Prod. 2017;166:350–9.

    Article  CAS  Google Scholar 

  14. Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.

    Article  CAS  Google Scholar 

  15. Hemmat Esfe M, Bahiraei M, Mahian O. Experimental study for developing an accurate model to predict viscosity of CuO–ethylene glycol nanofluid using genetic algorithm based neural network. Powder Technol. 2018;338:383–90.

    Article  CAS  Google Scholar 

  16. Yiamsawas T, Mahian O, Dalkilic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.

    Article  CAS  Google Scholar 

  17. Esfe MH, Dalir R, Bakhtiari R, Afrand M. Simultaneous effects of multi-walled carbon nanotubes and copper oxide nanoparticles on the rheological behavior of cooling oil: application for refrigeration systems. Int J Refrig. 2019;104:123–33.

    Article  CAS  Google Scholar 

  18. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M. A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. Int J Heat Mass Transf. 2018;127:997–1012.

    Article  CAS  Google Scholar 

  19. Ranjbarzadeh R, Akhgar A, Musivand S, Afrand M. Effects of graphene oxide-silicon oxide hybrid nanomaterials on rheological behavior of water at various time durations and temperatures: synthesis, preparation and stability. Powder Technol. 2018;335:375–87.

    Article  CAS  Google Scholar 

  20. Bahrami M, Akbari M, Bagherzadeh SA, Karimipour A, Afrand M, Goodarzi M. Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: measure MSEs between targets & ANN for Fe–CuO/Eg–water nanofluid. Phys A. 2019;519:159–68.

    Article  CAS  Google Scholar 

  21. Hemmat Esfe M, Kamyab MH, Afrand M, Amiri MK. Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10 W-40 engine oil. Phys A. 2018;510:610–24.

    Article  CAS  Google Scholar 

  22. Hemmat Esfe M, Reiszadeh M, Esfandeh S, Afrand M. Optimization of MWCNTs (10%)–Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network. Phys A. 2018;512:731–44.

    Article  CAS  Google Scholar 

  23. Hemmat Esfe M, Rostamian H, Esfandeh S, Afrand M. Modeling and prediction of rheological behavior of Al2O3–MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data. Phys A. 2018;510:625–34.

    Article  CAS  Google Scholar 

  24. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Thermal Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  25. Sundar LS, Otero-Irurueta G, Singh MK, Sousa AC. Heat transfer and friction factor of multi-walled carbon nanotubes—Fe3O4 nanocomposite nanofluids flow in a tube with/without longitudinal strip inserts. Int J Heat Mass Transf. 2016;100:691–703.

    Article  CAS  Google Scholar 

  26. Shababi K, Firouzi M, Fakhar A. An experimental study on rheological behavior of SAE50 engine oil. J Therm Anal Calorim. 2018;131:2311–20.

    Article  CAS  Google Scholar 

  27. Hemmat Esfe M, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybridnano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci. 2017;80:384–90.

    Article  CAS  Google Scholar 

  28. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Therm Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  29. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2–MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  30. Asadi Meisam, Asadi Amin. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different. Int Commun Heat Mass Transf. 2016;76:41–5.

    Article  CAS  Google Scholar 

  31. Nadooshan AA, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4–MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: newtonian and non-Newtonian behavior. J Mol Liq. 2018;253:169–77.

    Article  CAS  Google Scholar 

  32. Dardan E, Afrand M, Isfahani AM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    Article  CAS  Google Scholar 

  33. Esfe MH, Arani AAA, Rezaie M, Yan W-M, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Article  CAS  Google Scholar 

  34. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 2007;32:397–402.

    Article  CAS  Google Scholar 

  35. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  36. Hamid KA, Azmi W, Mamat R, Usri N, Najafi G. Investigation of Al2O3 nanofluid viscosity for different water/EG mixture based. Energy Procedia. 2015;79:354–9.

    Article  CAS  Google Scholar 

  37. Esfe MH, Hajmohammad MH, Sina N, Afrand M. Optimization of thermophysical properties of Al2O3/water–EG (80: 20) nanofluids by NSGA-II. Phys E. 2018;103:264–72.

    Article  CAS  Google Scholar 

  38. Rejvani M, Moghaddam MA, Alamdari P. Using statistical and optimization tools for determining optimal formulations and operating conditions for Al2O3/(EG + Water) nanofluids for cooling system. Therm Sci Eng Prog. 2018;7:230–40.

    Article  Google Scholar 

  39. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7.

    Article  CAS  Google Scholar 

  40. Zareie A, Akbari M. Hybrid nanoparticles effects on rheological behavior of water–EG coolant under different temperatures: an experimental study. J Mol Liq. 2017;230:408–14.

    Article  CAS  Google Scholar 

  41. Maïga SEB, Nguyen CT, Galanis N, Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004;35:543–57.

    Article  CAS  Google Scholar 

  42. Sahoo BC, Vajjha RS, Ganguli R, Chukwu GA, Das DK. Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations. Pet Sci Technol. 2009;27:1757–70.

    Article  CAS  Google Scholar 

  43. Vajjha RS. Measurements of thermophysical properties of nanofluids and computation of heat transfer characteristics. University of Alaska Fairbanks; 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Ahmadi Nadooshan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, S., Ahmadi Nadooshan, A. & Raisi, A. The effect of hybrid nano-additive consists of graphene oxide and copper oxide on rheological behavior of a mixture of water and ethylene glycol. J Therm Anal Calorim 139, 2353–2364 (2020). https://doi.org/10.1007/s10973-019-08569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08569-y

Keywords

Navigation