Skip to main content
Log in

Solid-state compatibility studies of Ketoconazole-Fumaric acid co-crystal with tablet excipients

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work presents a detailed excipient compatibility study of the Ketoconazole-Fumaric acid (KET-FUM) co-crystal, which might be a good alternative to Ketoconazole in the oral treatment of antifungal infections, due to its substantially higher aqueous solubility. Physical mixtures of the co-crystal with hydroxypropyl-methyl cellulose K4M (HPMC), corn starch (CSt), silicon dioxide (SiO2), lactose monohydrate (Lact), talc, polyvinyl-pyrrolidone K90 (PVP) and magnesium stearate (MgSt) were prepared in a 1:1 (w:w) ratio and analyzed by thermal analysis (DSC/TG), powder X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR) and Karl Fischer titration. Compatibility assessment was systematically evaluated using the above complementary techniques on the mixtures after preparation as well as after two storage conditions (12 months at ambient conditions and 3 months at elevated temperature and relative humidity (40 °C/75% RH). The solid-state compatibility of the co-crystal was confirmed with HPMC, Lact, CSt, SiO2, while in the case of MgSt and PVP possible interactions were identified. The co-crystal interaction with MgSt is heating induced, as evidenced by DSC alone. In the case of PVP, both DSC and FT-IR indicated possible hydrogen-bonding in the amorphous phase. The solid-state compatibility results evidence the potential of the KET-FUM co-crystal to be developed as an oral drug. Moreover, our study reinforces the applicability of the binary mixture approach designed for APIs and salt-based formulations to be used in the case of co-crystals, in order to assess their pharmaceutical developability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou QT, Li T. Formulation and manufacturing of solid dosage forms. Pharm Res. 2019;36:16.

    Article  CAS  Google Scholar 

  2. Hamido M. Considerations in pre-formulation stage of solid and semi-solid dosage forms. Pharm Anal Acta. 2015;6(1):160.

    Google Scholar 

  3. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1:3–26.

    CAS  Google Scholar 

  4. Fathima N, Mamatha T, Qureshi HK, Anitha N, Venkateswara Rao J. Drug-excipient interaction and its importance in dosage form development. JAPS. 2011;1(6):66–71.

    Google Scholar 

  5. Lima NGPB, Lima IPB, Barros DMC, Oliveira TS, Raffin FN, de Lima e Moura TFA, Medeiros ACD, Gomes APB, Aragão CFS. Compatibility studies of trioxsalen with excipients by DSC, DTA and FTIR. J Therm Anal Calorim. 2014;115:2311–8.

    Article  CAS  Google Scholar 

  6. Kalász H, Antal I. Drug excipients. Curr Med Chem. 2006;13:2535–63.

    Article  PubMed  Google Scholar 

  7. Mendonça CMS, Lima IPB, Aragão CFS, Gomes APB. Thermal compatibility between hydroquinone and retinoic acid in pharmaceutical formulations. J Therm Anal Calorim. 2014;115:2277–85.

    Article  CAS  Google Scholar 

  8. Rojek B, Wesolowski M. Compatibility studies of hydrocortisone with excipients using thermogravimetric analysis supported by multivariate statistical analysis. J Therm Anal Calorim. 2017;127:543–53.

    Article  CAS  Google Scholar 

  9. Teixeira FV, Alves GL, Ferreira MH, Taveira SF, da Cunha-Filho MS, Marreto RN. Preformulation studies to guide the development of raloxifene lipid-based delivery systems. J Therm Anal Calorim. 2018;132(1):365–71.

    Article  CAS  Google Scholar 

  10. Nep EI, Conway BR. Preformulation studies on grewia gum as a formulation excipient. J Therm Anal Calorim. 2012;108:197–205.

    Article  CAS  Google Scholar 

  11. Pires FQ, Angelo T, Silva JK, Sá-Barreto LC, Lima EM, Gelfuso GM, Gratieri T, Cunha-Filho MS. Use of mixture design in drug-excipient compatibility determinations: thymol nanoparticles case study. J Pharm Biomed Anal. 2017;137:196–203.

    Article  CAS  PubMed  Google Scholar 

  12. Roumeli E, Tsiapranta A, Pavlidou E, Vourlias G, Kachrimanis K, Bikiaris D, Chrissafis K. Compatibility study between trandolapril and natural excipients used in solid dosage forms. J Therm Anal Calorim. 2013;111:2109–15.

    Article  CAS  Google Scholar 

  13. Nie H, Byrn SR, Zhou QT. Stability of pharmaceutical salts in solid oral dosage forms. Drug Dev Ind Pharm. 2017;43(8):1215–28.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta D, Bhatia D, Dave V, Sutariya V, Varghese Gupta S. Salts of therapeutic agents: chemical, physicochemical, and biological considerations. Molecules. 2018;23(7):1719.

    Article  PubMed Central  CAS  Google Scholar 

  15. Kumar A, Kumar S, Nanga A. A review about regulatory status and recent patents of pharmaceutical co-crystals. Adv Pharm Bull. 2018;8(3):355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics. 2018;10(1):18–48.

    Article  PubMed Central  CAS  Google Scholar 

  17. Martin FA, Pop MM, Borodi G, Filip X, Kacso I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst Growth Des. 2013;13:4295–304.

    Article  CAS  Google Scholar 

  18. Hiendrawan S, Hartanti AW, Veriansyah B, Widjojokusumo E, Tjandrawinata RR. Solubility enhancement of ketoconazole via salt and cocrystal formation. Int J Pharm Pharm Sci. 2015;7:160–4.

    CAS  Google Scholar 

  19. de Lima Gomes EC, de Carvalho IE, Ligorio Fialho S, Barbosa J, Yoshida MI, da Silva Cunha Junio A. Mixing method influence on compatibility and polymorphism studies by DSC and statistical analysis. J Therm Anal Calorim. 2018;131(3):2123–8.

    Article  CAS  Google Scholar 

  20. Chadha R, Bhandari S. Drug-excipient compatibility screening-role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97.

    Article  CAS  PubMed  Google Scholar 

  21. Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today. 2003;8(19):898–905.

    Article  CAS  PubMed  Google Scholar 

  22. ICH Topic Q 1 A (R2) Stability testing of new substances and products, European Medicines Agency, Step 5: Note for guidance on stability testing: stability testing of new substances and products (CPMP/ICH/2736/99), 2003.

  23. Bruni G, Berbenni V, Milanese C, Girella A, Marini A. Drug-excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Therm Anal Calorim. 2010;102:193–201.

    Article  CAS  Google Scholar 

  24. Guerrieri P, Taylor LS. Role of salt and excipient properties on disproportionation in the solid-state. Pharm Res. 2009;26(8):2015–26.

    Article  CAS  PubMed  Google Scholar 

  25. Talvani A, Bahia MT, de Sá-Barreto LC, Lima EM, da Cunha-Filho MS. Carvedilol: decomposition kinetics and compatibility with pharmaceutical excipients. J Therm Anal Calorim. 2014;115(3):2501–6.

    Article  CAS  Google Scholar 

  26. Siahi MR, Rahimi S, Monajjemzadeh F. Analytical investigation of the possible chemical interaction of methyldopa with some reducing carbohydrates used as pharmaceutical excipients. Adv Pharm Bull. 2018;8(4):657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Accelrys Software Inc., MATERIALS STUDIO1, Release 5.5, 2010; see a detailed description at: http://accelrys.com/products/materials-studio/index.html.

  28. Connors KA. The Karl Fischer titration of water. Drug Dev Ind Pharm. 1988;14(14):1891–903.

    Article  CAS  Google Scholar 

  29. Bruni G, Amici L, Berbenni V, Marini A, Orlandi A. Drug-excipient compatibility studies. Search of interaction indicators. J Therm Anal Calorim. 2002;68:561–73.

    Article  CAS  Google Scholar 

  30. Rus LM, Tomuta I, Iuga C, Maier C, Kacso I, Borodi G, Bratu I, Bojita M. Compatibility studies of indapamide/pharmaceutical excipients used in tablet preformulation. FARMACIA. 2012;60(1):92–101.

    CAS  Google Scholar 

  31. Bozkurt E, Ukar I, Kartal I, Bulut H, Büyükgünör O. Structural, spectroscopic characterization and EPR studies of tetramethylammonium-hydrogen fumarate–fumaric acid complex. J Phys Chem Solids. 2008;69(8):2109–15.

    Article  CAS  Google Scholar 

  32. Papneja P, Kataria MK, Bilandi A. Formulation and evaluation of solid dispersion for dissolution enhancement of ketoconazole. EJPMR. 2015;2(5):990–1014.

    Google Scholar 

  33. Kumar P, Mohan C, Srinivasan MK, Gulati M. Physiochemical characterization and release rate studies of solid dispersions of ketoconazole with pluronic F127 and PVP K-30. IJPR. 2011;10(4):685–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Karolewicz B, Gorniak A, Owczarek A, Zurawska-Płaksej E, Piwowar A, Pluta J. Thermal, spectroscopic, and dissolution studies of ketoconazole–Pluronic F127 system. J Therm Anal Calorim. 2014;115:2487–93.

    Article  CAS  Google Scholar 

  35. Paralikar P. Fabrication of ketoconazole nanoparticles and their activity against Malassezia furfur. Nusant Biosci. 2015;7(1):43–7.

    Google Scholar 

  36. Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR, Silva MAS. Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008;91(3):323–8.

    Article  CAS  Google Scholar 

  37. Tita D, Jurca T, Fulia A, Marian E, Tita B. Compatibility study of the acetylsalicylic acid with different solid dosage forms excipients. J Therm Anal Calorim. 2013;112(1):407–19.

    Article  CAS  Google Scholar 

  38. Alves-Silva I, Sá-Barreto LC, Lima EM, Cunha-Filho MS. Preformulation studies of itraconazole associated with benznidazole and pharmaceutical excipients. Thermochim Acta. 2014;575:29–33.

    Article  CAS  Google Scholar 

  39. Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauti S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119:71–9.

    Article  CAS  Google Scholar 

  40. Canbay HS, Doğantürk M. Application of differential scanning calorimetry and fourier transform infrared spectroscopy to the study of metoprolol-excipient and lisinopril-excipient compatibility. Eurasian J Anal Chem. 2018;13(5):39.

    Google Scholar 

  41. Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants. 2014;2:21–43.

    Article  CAS  Google Scholar 

  42. Gorain B, Choudhury H, Pandey M, Madheswaran T, Kesharwani P, Tekade RK. Drug_excipient interaction and incompatibilities. In: Tekade RK, editor. Dosage form design parameters, vol. II. Cambridge: Academic Press; 2018. p. 363–402.

    Chapter  Google Scholar 

  43. Anbarasan A, Nataraj J, Shanmukhan N, Radhakrishnan A. Effect of hygroscopicity on pharmaceutical ingredients, methods to determine and overcome: an overview. J Chem Pharm Res. 2018;10(3):61–7.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI – UEFISCDI, Project Number PN-III-P2-2.1-PED-2016-1521, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Maria Rus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacso, I., Rus, L.M., Martin, F. et al. Solid-state compatibility studies of Ketoconazole-Fumaric acid co-crystal with tablet excipients. J Therm Anal Calorim 143, 3499–3506 (2021). https://doi.org/10.1007/s10973-020-09340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09340-4

Keywords

Navigation