Skip to main content
Log in

Compatibility studies of trioxsalen with excipients by DSC, DTA, and FTIR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Psoralens are widely used for the treatment of psoriasis. Trioxsalen is a drug prescribed low-dose, belonging to the group of substituted psoralen. The aim of this study was to evaluate the compatibility of trioxsalen with pharmaceutical excipients used in the solid forms by analytical techniques. Binary mixtures between the trioxsalen and pharmaceutical excipients (namely, magnesium stearate, α-lactose, microcrystalline cellulose 102, pregelatinized starch, mannitol, sodium lauryl sulfate, sodium starch glycolate, and croscarmellose sodium) were examined. The trioxsalen–sodium lauryl sulfate mixture displayed some physical interaction based on the DTA and DSC results, but the FTIR study ruled out any chemical change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ryan S. Psoriasis: characteristics, psychosocial effects and treatment options. Br J Nurs. 2008;17:284–90.

    Google Scholar 

  2. Davidovici BB, Sullivan-Whalen MM, Gilleaudeau P, Krueger JG. Differing effect of systemic anti psoriasis therapies on platelet physiology—a case report and review of literature. BMC Dermatol. 2010;10(2):1–5.

    Google Scholar 

  3. Langley RGB, Krueger GG, Griffiths CEM. Psoriasis: epidemiology, clinical features, and quality of life. Ann Rheum Dis. 2005;64(Suppl II):18–23.

    Google Scholar 

  4. Hadjipavlou-Litina D, Bariamis ES, Militsopoulou M, Athanassopoulos CM, Papaioannou D. Trioxsalen derivatives with lipoxygenase inhibitory activity. J Enzyme Inhib Med Chem. 2009;24(6):1351–6.

    Article  CAS  Google Scholar 

  5. U.S. Pharmacopeia. USP 29. http://www.pharmacopeia.cn/v29240/usp29nf24s0_alpha-2-32.html. Accessed 15 Oct 2011.

  6. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;8:335–57.

    Article  Google Scholar 

  7. Leite RS, Macedo RO, Torres SM, Batista CCN, Baltazar LO, Lima Neto SA, Souza FS. Evaluation of thermal stability and parameters of dissolution of nifedipine crystals. J Therm Anal Calorim. 2013;111:2117–23.

    Article  CAS  Google Scholar 

  8. Chaves LL, Rolim LA, Gonçalves Maria LCM, Vieira ACC, Alves LDS, Soares MFR, Soares-Sobrinho JL, Lima MCA, Rolim-Neto PJ. Study of stability and drug-excipient compatibility of diethylcarbamazine citrate. J Therm Anal Calorim. 2013;111:2179–86.

    Article  CAS  Google Scholar 

  9. Pinto MF, de Moura EA, de Souza FS, Macêdo RO. Thermal compatibility studies of nitroimidazoles and excipients. J Therm Anal Calorim. 2010;102:323–9.

    Article  CAS  Google Scholar 

  10. Mendonça CMS, Lima IPB, Aragão CFS, Gomes APB. Thermal compatibility between hydroquinone and retinoic acid in pharmaceutical formulations. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-2941-6.

    Google Scholar 

  11. de Oliveira MA, Yoshida MI, Gomes ECL, Mussel WN, Vianna-Soares CD, Pianetti GA. Análise térmica aplicada à caracterização da sinvastatina em formulações farmacêuticas. Quim Nova. 2010;33(8):1653–7.

    Article  Google Scholar 

  12. Nep EI, Conway BR. Preformulation studies on grewia gum as a formulation excipient. J Therm Anal Calorim. 2012;108:197–205.

    Article  CAS  Google Scholar 

  13. Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, Roberts MS. Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets. Eur J Pharm Biopharm. 2009;73:404–13.

    Article  CAS  Google Scholar 

  14. Roumeli E, Tsiapranta A, Pavlidou E, Vourlias G, Kachrimanis K, Bikiaris D, Chrissafis K. Compatibility study between trandolapril and natural excipients used in solid dosage forms. J Therm Anal Calorim. 2013;111:2109–15.

    Article  CAS  Google Scholar 

  15. Yoshida MI, Gomes ECL, Soares CDV, Cunha AF, Oliveira MA. Thermal analysis applied to verapamil hydrochloride. Characterization in pharmaceutical formulations. Molecules. 2010;15:2439–52.

    Article  CAS  Google Scholar 

  16. Salama NN, El Ries MA, Toubar S, El Hamid MA, Walash MI. Thermoanalytical investigation of some sulfone-containing drugs. J Anal Methods Chem. 2012;. doi:10.1155/2012/439082.

    Google Scholar 

  17. Bragagni M, Beneitez C, Martín C, Ossa Dhpdl, Mura Pa, Gil-Alegre ME. Selection of PLA polymers for the development of injectable prilocaine controlled release microparticles: usefulness of thermal analysis. Int J Pharm. 2013;441:468–75.

    Article  CAS  Google Scholar 

  18. Klancnik G, Medved J, Mrvar P. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation. RMZ-M&G. 2010;57:127–42.

    CAS  Google Scholar 

  19. Gopinath R, Naidu RAS. Pharmaceutical preformulation studies—Current Review. IJPBA. 2011;2(5):1391–400.

    Google Scholar 

  20. Swamivelmanickam M, Valliappan K, Reddy PG, Madhukar A, Manavalan R. Preformulation studies for amoxicillin trihydrate and dicloxacillin sodium as mouth dissolve tablets. Int J ChemTech Res. 2009;1(4):1032–5.

    CAS  Google Scholar 

  21. Silva JPS, Lobo JMS. Compatibility studies between nebicapone, a novel COMT inhibitor, and excipients using stepwise isothermal high sensitivity DSC method. J Therm Anal Calorim. 2010;102:317–21.

    Article  Google Scholar 

  22. Aigner Z, Heinrich R, Sipos E, Farkas G, Ciurba A, Berkesi O, Szabó-Révész P. Compatibility studies of aceclofenac with retard tablet excipients by means of thermal and FT-IR spectroscopic methods. J Therm Anal Calorim. 2011;104:265–71.

    Article  CAS  Google Scholar 

  23. Tita D, Jurca T, Fulias A, Tita EMB. Compatibility study of the acetylsalicylic acid with different solid dosage forms excipients. J Therm Anal Calorim. 2013;112:407–19.

    Article  CAS  Google Scholar 

  24. Thumma S, Repka MA. Compatibility studies of promethazine hydrochloride with tablet excipients by means of thermal and non-thermal methods. Pharmazie. 2009;64(3):183–9.

    CAS  Google Scholar 

  25. Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84:441–5.

    Article  CAS  Google Scholar 

  26. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  27. Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical Excipient. 5th ed. London: Pharmaceutical Press; 2006.

    Google Scholar 

  28. Patel Badalkumar R, Jatav Rajesh K, Jatav Rakesh K, Sheorey Rajendra V. Formulation development & evaluation of cefpodoxime proxetil dispersible tablets. Int J Drug Dev Res. 2012;4(2):124–31.

    Google Scholar 

  29. Júlio TA, Zâmara IF, Garcia JS, Trevisan MG. Compatibility of sildenafil citrate and pharmaceutical excipients by thermal analysis and LC–UV. J Therm Anal Calorim. 2013;111:2037–44.

    Article  Google Scholar 

  30. Freire FD, Aragão CFS, de Lima e Moura FA, Raffin FN. Compatibility study between chlorpropamide and excipients in their physical mixtures. J Therm Anal Calorim. 2009;97:355–7.

    Article  CAS  Google Scholar 

  31. Collier JW, Shah RB, Gupta A, Sayeed V, Habib MJ, Khan MA. Influence of formulation and processing factors on stability of levothyroxine sodium pentahydrate. AAPS PharmSciTech. 2010;11:818–25.

    Article  CAS  Google Scholar 

  32. Bacon Ke. Differential thermal analysis of high polymers. II. Effects of diluents on melting behavior of polyethylenes. J Polym Sci. 1961;50:79–86.

    Article  Google Scholar 

  33. Soares-Sobrinho JL, Soares MFLR, Lopes PQ, Correia LP, Souza FS, Macêdo RO, Rolim-Neto PJ. A preformulation study of a new medicine for Chagas disease treatment: physicochemical characterization, thermal stability, and compatibility of benznidazole. AAPS PharmSciTech. 2010;11(3):1391–6.

    Article  CAS  Google Scholar 

  34. Costa SPM, Silva KER, Medeiros GCR, Rolim LA, Oliveira JF, Lima MCA, Galdino SL, Pitta IR, Neto PJR. Thermal behavior and compatibility analysis of the new chemical entity LPSF/FZ4. Thermoch Acta. 2013;. doi:10.1016/j.tca.2013.03.003.

    Google Scholar 

  35. Soares MFLR, Soares-Sobrinho JL, da Silva KER, Alves LDS, Lopes PQ, Correia LP, Souza FS, Macêdo RO, Rolim-Neto PJ. Thermal characterization of antimicrobial drug ornidazole and its compatibility in a solid pharmaceutical product. J Therm Anal Calorim. 2011;104:307–13.

    Article  Google Scholar 

  36. Lavor EP, Freire FD, Aragão CFS, Raffin FN, Moura TFAL. Application of thermal analysis to the study of anti-tuberculosis drug compatibility. Part 1. J Therm Anal Calorim. 2012;108:207–12.

    Article  CAS  Google Scholar 

  37. Haines PJ, Reading M, Wilburn FW. Differential thermal analysis and differential scanning calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. Chap. 5. v.1 Principles and practice. Amsterdam: Elsevier Science; 1998. p. 279–361.

    Google Scholar 

  38. Peres-Filho MJ, Gaeti MPN, de Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2011;104:255–60.

    Article  CAS  Google Scholar 

  39. Tita B, Bandur AFG, Marian E, Tita D. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal. 2011;56:221–7.

    Article  CAS  Google Scholar 

  40. Lavor EP, Navarro MVM, Freire FD, Aragão CFS, Raffin FN, Barbosa EG, Moura TFAL. Application of thermal analysis to the study of antituberculosis drugs–excipient compatibility. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3050-2.

    Google Scholar 

  41. Bernardi LS, Oliveira PR, Murakami FS, Silva MAS, Borgmann SHM, Cardoso SG. Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients. J Therm Anal Calorim. 2009;97:729–33.

    Article  CAS  Google Scholar 

  42. Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2012;108:219–26.

    Article  CAS  Google Scholar 

  43. Maximiano FP, Novack KM, Bahia MT, Sá-Barreto LL, Cunha-Filho MSS. Polymorphic screen and drug–excipient compatibility studies of the antichagasic benznidazole. J Therm Anal Calorim. 2011;106:819–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação de Apoio à Pesquisa do Estado do Rio Grande do Norte (FAPERN), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support and Laboratório de Certificação de Biomateriais (CERTBIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cícero F. S. Aragão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, N.G.P.B., Lima, I.P.B., Barros, D.M.C. et al. Compatibility studies of trioxsalen with excipients by DSC, DTA, and FTIR. J Therm Anal Calorim 115, 2311–2318 (2014). https://doi.org/10.1007/s10973-013-3216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3216-y

Keywords

Navigation