Skip to main content
Log in

Energy and exergy analysis of a hydrogen-fueled HCCI engine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nowadays, engines design technology tends toward less fuel consumption and emission besides higher efficiency. Hydrogen as a clean fuel has been a point of interest for long time, but in recent years due to fossil fuel increasing prices and stringent environmental laws, more considerations have been made. In addition to the challenges of producing and storing hydrogen as a fuel for internal combustion engines, the engine performance should be independently evaluated. Simultaneous investigation of energy and exergy brings better analysis of internal combustion engines performance and helps researchers to propose more efficient ways for engines development. In this work, energy and exergy analysis of a hydrogen-fueled homogeneous charge compression ignition engine has been done to investigate the effects of engine input parameters on its performance. Considered input parameters are engine speed, inlet pressure and temperature, equivalence ratio and exhaust gas recirculation. To achieve this goal, a single-zone thermodynamic model considering detailed chemical kinetics has been employed which is able to estimate engine performance qualitatively. Results show inlet valve closing (IVC) pressure and equivalence ratio have the greatest impact on irreversibility and exergy terms, while engine speed is the least effective parameter on irreversibility production. Both power and irreversibility increase by IVC pressure enhancement, and furthermore IVC temperature increase reduces charge chemical exergy by engine volumetric efficiency decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

0D:

Zero dimensional

aBDC:

After bottom dead center

aTDC:

After top dead center

bBDC:

Before bottom dead center

CI:

Compression ignition

CFD:

Computational fluid dynamics

CAD:

Crank angle degree

EGR:

Exhaust gas recirculation

EVO:

Exhaust valve opening

HCCI:

Homogeneous charge compression ignition

HC:

Hydrocarbon

IMEP:

Indicated mean effective pressure

IVC:

Inlet valve closing

NOx :

Nitrogen oxides

SI:

Spark ignition

SOC:

Start of combustion

TKM:

Thermo-kinetic model

VVT:

Variable valve timing

A :

Availability

Ex:

Exergy

H :

Enthalpy

HR:

Humidity ratio

I :

Irreversibility

K :

Specific heat capacities ratio

N :

Engine speed

P :

Pressure, power

\(r_{\text{c}}\) :

Real compression ratio

S :

Entropy

T :

Temperature

V :

Volume

Y :

Mole/mass fraction

\(\theta\) :

Crank angle

\(\mu\) :

Chemical potential

\(\emptyset\) :

Equivalence ratio

0:

Dead state

C:

Chemical, clearance

gen:

Generated

Q:

Heat transfer

tm:

Thermo-mechanical

W:

Work

References

  1. ISO. Basic considerations for the safety of hydrogen systems, 2001. Technical Report ISO/PDTR 15916.

  2. Hairuddin AA, Yusaf T, Wandel AP. A review of hydrogen and natural gas addition in diesel HCCI engines. Renew Sustain Energy Rev. 2014;32:739–61.

    Article  CAS  Google Scholar 

  3. Ibrahim MM, Ramesh A. Investigations on the effects of intake temperature and charge dilution in a hydrogen fueled HCCI engine. Int J Hydrog Energy. 2014;39(26):14097–108.

    Article  CAS  Google Scholar 

  4. Fathi M, Jahanian O, Shahbakhti M. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines—a comprehensive review. Energy Convers Manag. 2017;139:1–19.

    Article  CAS  Google Scholar 

  5. Ezoji H, Shafaghat R, Jahanian O. Numerical simulation of dimethyl ether/natural gas blend fuel HCCI combustion to investigate the effects of operational parameters on combustion and emissions. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7271-2.

    Article  Google Scholar 

  6. Pielecha I, Borowski P, Czajka J, Wisłocki K, Kaźmierowski J. Combustion process shaping by use of different strategies of multiple fuel injection in a CI model engine. J Therm Anal Calorim. 2015;119(1):695–703.

    Article  CAS  Google Scholar 

  7. Sroka ZJ. Some aspects of thermal load and operating indexes after downsizing for internal combustion engine. J Therm Anal Calorim. 2011;110(1):51–8.

    Article  CAS  Google Scholar 

  8. Nouri M, Namar MM, Jahanian O. Analysis of a developed Brayton cycled CHP system using ORC and CAES based on first and second law of thermodynamics. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7316-6.

    Article  Google Scholar 

  9. Doğan B, Erol D, Yaman H, Kodanli E. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Appl Therm Eng. 2017;120:433–43.

    Article  CAS  Google Scholar 

  10. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018;1:1–19.

    Google Scholar 

  11. Saravanakumar R, Selladurai V. Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. J Therm Anal Calorim. 2014;115(1):933–40.

    Article  CAS  Google Scholar 

  12. Pandey A, Tyagi V, Park S, Tyagi S. Comparative experimental study of solar cookers using exergy analysis. J Therm Anal Calorim. 2011;109(1):425–31.

    Article  CAS  Google Scholar 

  13. Marquardt M. Hydrogen fuel cells. North Mankato: Abdo Publishing; 2017.

    Google Scholar 

  14. Boretti A, Osman A, Aris I. Direct injection of hydrogen, oxygen and water in a novel two stroke engine. Int J Hydrog Energy. 2011;36(16):10100–6.

    Article  CAS  Google Scholar 

  15. Erren RA, Hastings-Campbell W. Hydrogen from off-peak power. Chem Trade J. 1933;92:238–9.

    CAS  Google Scholar 

  16. Bengtsson J, Gafvert M, Strandh P, editors. Modeling of HCCI engine combustion for control analysis. In: 43rd IEEE conference on decision and control, 2004, IEEE. CDC;2004.

  17. Lee K, Kim Y, Byun C, Lee J. Feasibility of compression ignition for hydrogen fueled engine with neat hydrogen-air pre-mixture by using high compression. Int J Hydrog Energy. 2013;38(1):255–64.

    Article  CAS  Google Scholar 

  18. Pochet M, Truedsson I, Foucher F, Jeanmart H, Contino F. Ammonia-hydrogen blends in homogeneous-charge compression-ignition engine. In: SAE technical paper 2017. Report no.: 0148-7191.

  19. Rakopoulos C, Kyritsis D. Hydrogen enrichment effects on the second law analysis of natural and landfill gas combustion in engine cylinders. Int J Hydrog Energy. 2006;31(10):1384–93.

    Article  CAS  Google Scholar 

  20. Guo H, Neill WS. The effect of hydrogen addition on combustion and emission characteristics of an n-heptane fuelled HCCI engine. Int J Hydrog Energy. 2013;38(26):11429–37.

    Article  CAS  Google Scholar 

  21. Nieminen J, Dincer I. Comparative exergy analyses of gasoline and hydrogen fuelled ICEs. Int J Hydrog Energy. 2010;35(10):5124–32.

    Article  CAS  Google Scholar 

  22. Amjad A, Saray RK, Mahmoudi S, Rahimi A. Availability analysis of n-heptane and natural gas blends combustion in HCCI engines. Energy. 2011;36(12):6900–9.

    Article  CAS  Google Scholar 

  23. Bika AS, Franklin L, Acevedo H, Kittelson D. Hydrogen fueled homogeneous charge compression ignition engine. In: SAE technical paper 2011. Report no.: 0148-7191.

  24. Fatehi GR, Khalilarya S, Ebrahimi R. Energy and exergy analyses of homogeneous charge compression ignition (HCCI) engine. Therm Sci. 2013;17(1):107–17.

    Article  Google Scholar 

  25. Nemati A, Fathi V, Barzegar R, Khalilarya S. Numerical investigation of the effect of injection timing under various equivalence ratios on energy and exergy terms in a direct injection SI hydrogen fueled engine. Int J Hydrog Energy. 2013;38(2):1189–99.

    Article  CAS  Google Scholar 

  26. Chintala V, Subramanian KA. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis. Energy. 2014;67:162–75.

    Article  CAS  Google Scholar 

  27. Jafarmadar S, Javani N. Exergy analysis of natural gas/DME combustion in homogeneous charge compression ignition engines (HCCI) using zero-dimensional model with detailed chemical kinetics mechanism. Int J Exergy. 2014;15(3):363–81.

    Article  CAS  Google Scholar 

  28. ÓConaire M, Curran HJ, Simmie JM, Pitz WJ, Westbrook CK. A comprehensive modeling study of hydrogen oxidation. Int J Chem Kinet. 2004;36(11):603–22.

    Article  CAS  Google Scholar 

  29. Kuo K. Principles of combustion. New York: Wiley; 1986.

    Google Scholar 

  30. Chang J, Güralp O, Filipi Z, Assanis DN, Kuo T-W, Najt P et al. New heat transfer correlation for an HCCI engine derived from measurements of instantaneous surface heat flux. In: SAE technical paper 2004. Report No.: 0148-7191.

  31. Jahanian O, Jazayeri S. A comprehensive numerical study on effects of natural gas composition on the operation of an HCCI engine. Oil Gas Sci Technol Revue d’IFP Energies Nouvelles. 2012;67(3):503–15.

    Article  CAS  Google Scholar 

  32. Sonntag RE, Borgnakke C, Van Wylen GJ, Van Wyk S. Fundamentals of thermodynamics. New York: Wiley; 1998.

    Google Scholar 

  33. Antunes JG, Mikalsen R, Roskilly A. An investigation of hydrogen-fuelled HCCI engine performance and operation. Int J Hydrog Energy. 2008;33(20):5823–8.

    Article  CAS  Google Scholar 

  34. Namar MM, Jahanian O. A simple algebraic model for predicting HCCI auto-ignition timing according to control oriented models requirements. Energy Convers Manag. 2017;154:38–45.

    Article  Google Scholar 

  35. Shahbakhti M, Lupul R, Koch CR. Predicting HCCI auto-ignition timing by extending a modified knock-integral method. In: SAE technical paper 2007. Report no.: 0148-7191.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Jahanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namar, M.M., Jahanian, O. Energy and exergy analysis of a hydrogen-fueled HCCI engine. J Therm Anal Calorim 137, 205–215 (2019). https://doi.org/10.1007/s10973-018-7910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7910-7

Keywords

Navigation