Skip to main content
Log in

Kinetics of heterogeneous-induced degradation for artesunate and artemether

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the results obtained after the investigation of two artemisinin derived sesquiterpenes, namely artesunate and artemether, currently studied for their antitumor properties. The chosen methods of analysis included UATR–FTIR spectroscopy, characterization of the thermal behavior (TG/DTG/HF) in oxidative dynamic atmosphere, and a complete kinetic analysis. The latter was realized using two integral methods (Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa), a differential one (Friedman), and was later completed with the modified NPK method. The study showed that both compounds show similar thermal stability in terms of apparent activation energies and the degradation processes occur in two parallel steps for each compound, this being solely due to chemical transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T :

Time

T :

Temperature

Α :

Conversion degree

f(α):

The differential conversion function

R :

The universal gas constant

g(α):

The integral conversion function

β :

The heating rate

k(T):

The temperature dependence function

A :

The pre-exponential factor

E a :

The apparent activation energy given by the Arrhenius equation

References

  1. Brunton LL, Lazo JS, Parker K, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  2. Aftab T. Artemisia annua—pharmacology and biotechnology (2016). https://doi.org/10.1007/978-3-642-41027-7.

  3. Ho WE, Peh HY, Chan TK, Wong WSF. Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther. 2014;142(1):126–39.

    Article  CAS  PubMed  Google Scholar 

  4. World Heath Organisation. The international pharmacopoeia. 6th ed. Geneva: World Heath Organisation; 2006.

    Google Scholar 

  5. Luo X-D, Yeh HJC, Brossi A, Flippen-Anderson JL, Gillardi R. The chemistry of drugs part IV, configurations of antimalarials derived from qinghaosu: dihydroqingyhaosu, artemether, and artesunic acid. Helv Chim Acta. 1984;67(6):1515–22.

    Article  CAS  Google Scholar 

  6. Butcher RJ, Jasinski JP, Yathirajan HS, Bindya S, Narayana B. α-Artemether. Acta Crystallogr Sect E: Struct Rep Online. 2007;63(7):o3291–2.

    Article  CAS  Google Scholar 

  7. Wang Z, Chen J, Li L, Zhou Z, Geng Y, Sun T. Detailed structural study of β-artemether: density functional theory (DFT) calculations of infrared, Raman spectroscopy, and vibrational circular dichroism. J Mol Struct. 2015;1097(71963):61–8.

    Article  CAS  Google Scholar 

  8. https://pubchem.ncbi.nlm.nih.gov/compound/16394563#section=Top. Accessed 23 Oct 2017.

  9. Lisgarten J, Potter B, Palmer R, Chimanuka B, Aymami J. Structure, absolute configuration, and conformation of the antimalarial drug artesunate. J Chem Crystallogr. 2002;32(1–2):43–8.

    Article  CAS  Google Scholar 

  10. Crespo-Ortiz MP, Wei MQ. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. 2012;2012:1–18.

    Article  CAS  Google Scholar 

  11. Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001;18(4):767–73.

    CAS  PubMed  Google Scholar 

  12. Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch M-E, Volm M, Tew KD, Ross DD, Funk JO. Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol. 2003;64(2):382–94.

    Article  CAS  PubMed  Google Scholar 

  13. Gabriëls M, Plaizier-Vercammen JA. Densitometric thin-layer chromatographic determination of artemisinin and its lipophilic derivatives, artemether and arteether. J Chromatogr Sci. 2003;41(7):359–66.

    Article  PubMed  Google Scholar 

  14. Farsam V, Hassan ZM, Zavaran-Hosseini A, Noori S, Mahdavi M, Ranjbar M. Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4 + CD25 + FoxP3 + T reg cells in vivo. Int Immunopharmacol. 2011;11(11):1802–8.

    Article  CAS  PubMed  Google Scholar 

  15. Raica M, Cimpean AM, Popovici RA, Balica AR, Vladau M, Gaje PN. Mast cells stimulate lymphangiogenesis in the gingiva of patients with periodontal disease. Vivo. 2015;29(1):29–34.

    Google Scholar 

  16. Podariu AC, Popovici AR, Rosianu RS, Oancea R. Comparative study on nickel and chromium salivary concentration in patients with prosthetic restorations on metallic frame. Rev Chim. 2013;64(9):971–3.

    CAS  Google Scholar 

  17. Dai Y-FF, Zhou W-WW, Meng J, Du X-LL, Sui Y-PP, Dai L, Wang P-QQ, Huo H-RR, Sui F. The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review. Med Chem Res. 2017;26(5):867–80.

    Article  CAS  Google Scholar 

  18. Popovici AR, Vlase G, Vlase T, Suta LM, Popoiu C, Ledeti I, Iovanescu G, Fulias A. Local anesthetic agents: III. Study of solid dosage forms with pharmaceutical excipients. Rev Chim. 2015;66(7):1046–51.

    CAS  Google Scholar 

  19. Motoc O, Popovici R, Onisei D, Podariu AC. Toxicological activity of some compounds with application on dentistry field experimental study. Rev Chim. 2015;66(7):1024–6.

    CAS  Google Scholar 

  20. Oliva A, Llabrés M, Fariña JB. Data analysis of kinetic modelling used in drug stability studies: isothermal versus nonisothermal assays. Pharm Res. 2006;23(11):2595–602.

    Article  CAS  PubMed  Google Scholar 

  21. Chavan RB, Shastri NR. Polymorphic transformation as a result of atovaquone incompatibility with selected excipients. J Therm Anal Calorim. 2017;131(3):1–11.

    Google Scholar 

  22. De Lima Gomes EC, Ercole de Carvalho I, Fialho SL, Barbosa J, Yoshida MI, da Silva Cunha Júnior A. Mixing method influence on compatibility and polymorphism studies by DSC and statistical analysis. J Therm Anal Calorim. 2018;131(3):2123–8.

    Article  CAS  Google Scholar 

  23. Veiga A, Oliveira PR, Bernardi LS, Mendes C, Silva MAS, Sangoi MS, Janissek PR, Murakami FS. Solid-state compatibility studies of a drug without melting point. J Therm Anal Calorim. 2018;131(3):3201–9.

    Article  CAS  Google Scholar 

  24. Wang X, You J. Study on the thermal decomposition of sofosbuvir. J Anal Appl Pyrolysis. 2017;123(2):376–84.

    Article  CAS  Google Scholar 

  25. Sun Y, Ren H, Jiao Q. Comparison of thermal behaviors and decomposition kinetics of NEPE propellant before and after storage. J Therm Anal Calorim. 2018;131(1):101–11.

    Article  CAS  Google Scholar 

  26. De Souza SMM, Leles MIG, Da Conceição EC. Evaluation of thermal stability of enalapril maleate tablets using thermogravimetry and differential scanning calorimetry. J Therm Anal Calorim. 2016;123(3):1943–9.

    Article  CAS  Google Scholar 

  27. Ledeti I, Bolintineanu S, Vlase G, Circioban D, Dehelean C, Suta LM, Caunii A, Ledeti A, Vlase T, Murariu M. Evaluation of solid-state thermal stability of donepezil in binary mixtures with excipients using instrumental techniques. J Therm Anal Calorim. 2017;130(1):425–31.

    Article  CAS  Google Scholar 

  28. Ledeti A, Vlase G, Vlase T, Circioban D, Dehelean C, Ledeti I. Kinetic study for solid-state degradation of mental disorder therapeutic agents. J Therm Anal Calorim. 2016;131:155–65.

    Article  CAS  Google Scholar 

  29. Ledeti A, Vlase G, Ledeti I, Vlase T, Matusz P, Dehelean C, Circioban D, Stelea L, Suta LM. Thermal stability of desipramine and imipramine. Rev Chim. 2016;67(2):336–8.

    CAS  Google Scholar 

  30. Shah PP, Mashru RC. Palatable reconstitutable dry suspension of artemether for flexible pediatric dosing using cyclodextrin inclusion complexation. Pharm Dev Technol. 2010;15(3):276–85.

    Article  CAS  PubMed  Google Scholar 

  31. Ansari MT, Karim S, Ranjha NM, Shah NH, Muhammad S. Physicochemical characterization of artemether solid dispersions with hydrophilic carriers by freeze dried and melt methods. Arch Pharm Res. 2010;33(6):901–10.

    Article  CAS  PubMed  Google Scholar 

  32. Mahgoub RA, Awad MH, Elkhidr HE. Establishment of simple colorimetric method of analysis artesunate in tablets. IOSR J Pharm Biol Sci Ver I. 2015;10(5):2319–7676.

    Google Scholar 

  33. Ansari MT, Hussain A, Nadeem S, Majeed H, Saeed-Ul-Hassan S, Tariq I, Mahmood Q, Khan AK, Murtaza G. Preparation and characterization of solid dispersions of artemether by freeze-dried method. Biomed Res Int. 2015. https://doi.org/10.1155/2015/109563.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pawar JN, Shete RT, Gangurde AB, Moravkar KK, Javeer SD, Jaiswar DR, Amin PD. Development of amorphous dispersions of artemether with hydrophilic polymers via spray drying: physicochemical and in silico studies. Asian J Pharm Sci. 2016;11(3):385–95.

    Article  Google Scholar 

  35. Drugbank profile of artemether. https://www.drugbank.ca/drugs/DB06697. Accessed 20 Nov 2017.

  36. Drugbank profile of artesunate. https://www.drugbank.ca/drugs/DB09274. Accessed 20 Nov 2017.

  37. Ledeţi I, Murariu M, Vlase G, Vlase T, Doca N, Ledeţi A, Şuta L-M, Olariu T. Investigation of thermal-induced decomposition of iodoform. J Therm Anal Calorim. 2017;127(1):565–70.

    Article  CAS  Google Scholar 

  38. Ledeti I, Vlase G, Vlase T, Murariu M, Trandafirescu C, Soica C, Suta LM, Dehelean C, Ledeti A. Non-isothermal isoconversional kinetic study regarding the degradation of albendazole. Rev Chim. 2016;67(3):549–52.

    CAS  Google Scholar 

  39. Suta LM, Vlase G, Ledeti A, Vlase T, Matusz P, Trandafirescu C, Circioban D, Olariu S, Ivan C, Murariu MS, Stelea L, Ledeti I. Solid-state thermal behaviour of cholic acid. Rev Chim. 2016;67(2):329–31.

    CAS  Google Scholar 

  40. Buda V, Andor M, Ledeti A, Ledeti I, Vlase G, Vlase T, Cristescu C, Voicu M, Suciu L, Tomescu M. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18(1):164.

    Article  CAS  PubMed Central  Google Scholar 

  41. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data. Thermochim Acta. 1998;316(1):37–45.

    Article  CAS  Google Scholar 

  42. Sempere J, Nomen R, Serra R, Soravilla J. The NPK method. Thermochim Acta. 2002;388(1–2):407–14.

    Article  CAS  Google Scholar 

  43. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88(3):631–5.

    Article  CAS  Google Scholar 

  44. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  45. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  46. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  47. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  48. Akahira T, Sunose T. Research report, trans joint convention of four electrical institutes. Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  49. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Part B Polym Lett. 1969;7(1):41–6.

    Article  CAS  Google Scholar 

  50. Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Therm Anal Calorim. 1999;56(2):843–9.

    Article  CAS  Google Scholar 

  51. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Ledeţi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Circioban, D., Ledeţi, I., Vlase, G. et al. Kinetics of heterogeneous-induced degradation for artesunate and artemether. J Therm Anal Calorim 134, 749–756 (2018). https://doi.org/10.1007/s10973-018-7257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7257-0

Keywords

Navigation