Skip to main content
Log in

Comparison of thermal behaviors and decomposition kinetics of NEPE propellant before and after storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitrate ester plasticized polyether (NEPE) propellant has attracted considerable attention as a kind of high-energy propellant. To investigate the evolution of thermal properties of NEPE propellant during storage life, TG-DSC-MS-FTIR was used to determine the thermal behaviors of the propellant samples before and after 5-year natural storage. It was found out that both samples experience five reaction steps and they are attributed by the evaporation and O–NO2 bond breaking of nitrate, crystal transition of HMX and thermal decomposition of plasticizer, HMX and ammonium perchlorate. Decomposition process and temperature ranges of each step maintain consistency, but nitrate ester tends to decompose more than evaporate after storage. In the meantime, the area of DSC peak formed in the third step noticeably increased, which accounts for the lower thermal explosion temperature. To further study the decomposition of plasticizer and HMX, their kinetic triplets were solved. It was found out that the activation energy increases significantly on plasticizer decomposition step because of the enlargement of the nitrate’s particle size. Therefore, it can be drawn that the decline of NEPE propellant’s safety property after storage was contributed by the decomposition step of nitrate ester plasticizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Matečić Mušanić S, Sućeska M, Bakija S. Applicability of dynamic mechanical and thermal methods in investigation of ageing processes of double based rocket propellants. In: Proceedings of 9th Seminar New Trends in Research of Energetic Materials, Pardubice; 2006. p. 214–30.

  2. Matečić Mušanić S, Sućeska M, Rajić Linarić M, Bakija S, Čuljak R. Changes of dynamic mechanic properties of double based rocket propellant during artificial ageing. In: Proceedings of 7th Seminar New Trends in Research of Energetic Materials, Pardubice; 2004. p. 570–83.

  3. Yan QL, Zhu WH, Pang AM, Chi XH, Du XJ, Xiao HM. Theoretical studies on the unimolecular decomposition of nitroglycerin. J Mol Model. 2013;19(4):1617–26.

    Article  CAS  Google Scholar 

  4. Suceska M, Musanic SM, Houra IF. Kinetics and enthalpy of nitroglycerin evaporation from double base propellants by isothermal thermogravimetry. Thermochim Acta. 2010;510(1–2):9–16.

    Article  CAS  Google Scholar 

  5. Tompa AS. Thermal analysis of liquid and solid propellants. J Hazard Mater. 1980;4(1):95–112.

    Article  CAS  Google Scholar 

  6. Sun YL, Li SF. The effect of nitrate esters on the thermal decomposition mechanism of GAP. J Hazard Mater. 2008;154(1–3):112–7.

    Article  CAS  Google Scholar 

  7. Menke K, Eisele S. Rocket propellants with reduced smoke and high burning rates. Propellants, Explos, Pyrotech. 1997;22(3):112–9.

    Article  CAS  Google Scholar 

  8. Oyumi Y, Inokami K, Yamazaki K, Matsumoto K. Thermal decomposition of BAMO/HMX propellants. Propellants, Explos, Pyrotech. 1993;18(2):62–8.

    Article  CAS  Google Scholar 

  9. Qin C, Zhao XB, Li J. Grey relational analysis in influencing factors of NEPE propellant sensitivity. Chin J Energ Mater. 2012;06:762–5.

    Google Scholar 

  10. Jiao QJ, Zhu YL, Xing JC, Ren H, Huang H. Thermal decomposition of RDX/AP by TG-DSC-MS-FTIR. J Therm Anal Calorim. 2014;116(3):1125–31.

    Article  CAS  Google Scholar 

  11. Li XY, Liu XL, Cheng Y, Li YC, Mei XL. Thermal decomposition properties of double-base propellant and ammonium perchlorate. J Therm Anal Calorim. 2014;115(1):887–94.

    Article  CAS  Google Scholar 

  12. Liu LL, He GQ, Wang YH, Liu PJ. Effect of catocene on the thermal decomposition of ammonium perchlorate and octogen. J Therm Anal Calorim. 2014;117(2):621–8.

    Article  CAS  Google Scholar 

  13. House JE Jr, Flentge C, Zack PJ. A study of propellant decomposition by differential scanning calorimetry. Thermochim Acta. 1978;24(1):133–8.

    Article  CAS  Google Scholar 

  14. Rodante F. A thermoanalytical study of the decomposition of a double-base propellant. Thermochim Acta. 1986;101:373–80.

    Article  CAS  Google Scholar 

  15. Kumari D, Singh H, Patil M, Thiel W, Pant CS, Banerjee S. Synthesis, characterization, thermal and computational studies of novel tetra-azido esters as energetic plasticizers. Thermochim Acta. 2013;562:96–9.

    Article  CAS  Google Scholar 

  16. Weese RK, Maienschein JL, Perrino CT. Kinetics of the β → δ solid–solid phase transition of HMX, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Thermochim Acta. 2003;401(1):1–7.

    Article  CAS  Google Scholar 

  17. Pinheiro GFM, Lourenco VL, Iha K. Influence of the heating rate in the thermal decomposition of HMX. J Therm Anal Calorim. 2002;67(2):445–52.

    Article  CAS  Google Scholar 

  18. Lee JS, Hsu CK, Chang CL. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim Acta. 2002;392:173–6.

    Article  Google Scholar 

  19. Zhu YL, Huang H, Ren H, Jiao QJ. Kinetics of thermal decomposition of ammonium perchlorate by TG/DSC-MS-FTIR. J Energ Mater. 2014;32(1):16–26.

    Article  CAS  Google Scholar 

  20. Wang YH, Liu LL, Xiao LY, Wang ZX. Thermal decomposition of HTPB/AP and HTPB/HMX mixtures with low content of oxidizer. J Therm Anal Calorim. 2015;119(3):1673–8.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 2002;29(11):1702–5.

    Article  Google Scholar 

  22. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  23. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  24. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. Beijing: Science Press; 2008.

    Google Scholar 

  25. Šatava V, Šesták JJ. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. Therm Anal. 1975;8(3):477–89.

    Article  Google Scholar 

  26. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. II. J Polym Sci B. 1964;3:182–5.

  27. Agrawal RK. A new equation for modeling nonisothermal kinetics. J Therm Anal. 1987;34(1):149–56.

    Article  Google Scholar 

  28. Fathollahi M, Pourmortazavi M, Hosseini G. Particle size effects on thermal decomposition of energetic material. J Energ Mater. 2007;26:52–69.

    Article  Google Scholar 

  29. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168(2–3):1134–9.

    Article  CAS  Google Scholar 

  30. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  31. Huang CC, Wu TS. A simple method for estimating the autoignition temperature of solid energetic materials with a single non-isothermal DSC or DTA curve. Thermochim Acta. 1994;239:105–14.

    Article  CAS  Google Scholar 

  32. Yi JH, Zhao FQ, Wang BZ, Liu Q, Zhou C, Hu RZ, et al. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant. J Hazard Mater. 2010;181(1–3):432–9.

    Article  CAS  Google Scholar 

  33. Semenov N. Theories of combustion processes. Zeitschrift fur Physikalische Chemie. 1928;48:571–82.

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (A11172042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Ren, H. & Jiao, Q. Comparison of thermal behaviors and decomposition kinetics of NEPE propellant before and after storage. J Therm Anal Calorim 131, 101–111 (2018). https://doi.org/10.1007/s10973-017-6525-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6525-8

Keywords

Navigation