Skip to main content
Log in

Comparative results of kinetic data obtained with different methods for complex decomposition steps

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A comparative kinetic analysis on the thermal decomposition of tartaric acid and potassium tartrate under non-isothermal conditions was performed. The non-isothermal kinetic parameters were determined by the following four methods: integral isoconversional method suggested by Flynn-Wall-Ozawa (FWO method); differential isoconversional method suggested by Friedman; Budrugeac-Segal method and Non-Parametric-Kinetic (NKP) method suggested by Sempere and Nomen and modified by Vlase and Doca. The comparison of the results obtaining by these methods leads to interesting conclusions. The experimental data were obtained in dynamic nitrogen atmosphere at heating rates of 5, 7, 10, 12 and 15 K min−1. The less speculative kinetic analysis was possible by the NPK method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Segal and D. Fătu, Introduction to Non-iosthermal kinetics, Edited by Romanian Academy, Bucharest, 1983 (in Romanian).

    Google Scholar 

  2. P. Simon, J. Therm. Anal. Cal., 82 (2005) 651; 703.

    Article  CAS  Google Scholar 

  3. A. K. Galwey and M. E. Brown, Thermochim. Acta, 386 (2002) 91.

    Article  CAS  Google Scholar 

  4. T. Vlase, Gabriela Vlase, N. Doca and C. Bolcu, J. Therm. Anal. Cal., 80 (2005) 59.

    Article  CAS  Google Scholar 

  5. T. Vlase, Gabriela Vlase, A. Chiriac and N. Doca, J. Therm. Anal. Cal., 80 (2005) 87.

    Article  CAS  Google Scholar 

  6. T. Vlase, Gabriela Vlase and N. Doca, J. Therm. Anal. Cal., 80 (2005) 207.

    Article  CAS  Google Scholar 

  7. T. Vlase, Gabriela Vlase and N. Doca, J. Therm. Anal. Cal., 80 (2005) 425.

    Article  CAS  Google Scholar 

  8. I. H. Flynn and L. A. Wall, Polym. Lett., 4 (1966) 323.

    Article  CAS  Google Scholar 

  9. T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.

    Article  CAS  Google Scholar 

  10. H. L. Friedman, J. Polym.. Sci., 6C (1965) 183.

    Google Scholar 

  11. P. Budrugeac and E. Segal, Thermochim. Acta, 260 (1995) 75.

    Article  CAS  Google Scholar 

  12. P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 64 (2001) 821.

    Article  CAS  Google Scholar 

  13. P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 66 (2001) 557.

    Article  CAS  Google Scholar 

  14. R. Serra, R. Nomen and J. Sempere, J. Therm. Anal. Cal., 52 (1998) 933.

    Article  CAS  Google Scholar 

  15. R. Serra, J. Sempere and R. Nomen, Thermochim. Acta, 316 (1998) 37.

    Article  CAS  Google Scholar 

  16. J. Sempere, R. Nomen and R. Serra, J. Therm. Anal. Cal., 56 (1999) 843.

    Article  CAS  Google Scholar 

  17. M. E. Wall, Singular value decomposition and principal component analysis, in ’A practical approach to microarray data analysis, 9. 91-109, Kluwer-Norwel, MA (2003), LANL LA-UR-02

    Google Scholar 

  18. J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vlase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlase, T., Vlase, G., Birta, N. et al. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim 88, 631–635 (2007). https://doi.org/10.1007/s10973-006-8019-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8019-y

Keywords

Navigation