Skip to main content
Log in

Investigation of thermal-induced decomposition of iodoform

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the results obtained after the investigation of thermal-induced decomposition of tri-iodo-substituted methane (iodoform), under non-isothermal conditions in dynamic oxidative atmosphere (air flow). Iodoform was obtained in our laboratory through haloform reaction, namely the halogenation of dimethyl ketone in the presence of a base, and later purified according to literature. The kinetic study for the thermodegradation was carried out by processing the data by Friedman, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and modified nonparametric kinetic (NPK) methods. All the results obtained by the employment of isoconversional methods are in good agreement; the mean apparent activation energy was around 330 kJ mol−1, by all three methods. However, since variation larger than 10 % of E a versus α was noticed, the NPK method was employed, and the separation of physical versus chemical transformations of the sample was possible. NPK method suggested that the degradation of iodoform occur in two parallel processes, the main step being a chemical degradation (n = 1/3), while the parallel process is a physical–chemical one (n = 3/5; m = 1/3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hill B. On the therapeutic use of iodoform. Brit Med J. 1878;1:127.

    Article  CAS  Google Scholar 

  2. Freedman M, Stassen LFA. Commonly used topical oral wound dressing materials in dental and surgical practice–a literature review. J Irish Dent Assoc. 2013;59(4):190–5.

    Google Scholar 

  3. Lyday PA. Iodine and iodine compounds, Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 2005.

    Google Scholar 

  4. Lin BC, Zhao YM, Yang J, Wang WJ, Ge LH. Effects of zinc oxide-eugenol and calcium hydroxide/iodoform on delaying root resorption in primary molars without successors. Dent Mater J. 2014;33(4):471–5.

    Article  CAS  Google Scholar 

  5. Kuga MC, Faria G, Só MV, Keine KC, dos Santos AD, Duarte MAH, Kopper PMP. The impact of the addition of iodoform on the physicochemical properties of an epoxy-based endodontic sealer. J Appl Oral Sci. 2014;22(2):125–30.

    Article  Google Scholar 

  6. Ashraf N, Capper R. Should we still be using bismuth iodoform paraffin paste-impregnated gauze as an ear canal dressing following ear surgery? Clin Otolaryngol. 2013;38(4):357–60.

    Article  CAS  Google Scholar 

  7. Ladak A, Agrawal S. Bismuth iodoform paraffin paste: a review. J Laryngol Otol. 2013;127(5):531–41.

    Article  CAS  Google Scholar 

  8. Petel R, Moskovitz M, Tickotsky N, Halabi A, Goldstein J, Houri-Haddad Y. Cytotoxicity and proliferative effects of Iodoform-containing root canal-filling material on RAW 264.7 macrophage and RKO epithelial cell lines. Arch Oral Biol. 2013;58(1):75–81.

    Article  CAS  Google Scholar 

  9. Abraham A, Zhang SS, Aly Y, Schoenitz M, Dreizin EL. Aluminum-iodoform composite reactive material. Adv Eng Mater. 2014;16(7):909–17.

    Article  CAS  Google Scholar 

  10. Gu JM, Yan XH, Fu ZF, Yang WT, Shi Y. Iodoform-mediated free radical emulsion polymerization of chloroprene. J Appl Polym Sci. 2013;128(4):2291–6.

    Article  CAS  Google Scholar 

  11. Bertolotti F, Gervasio G. Crystal structure of iodoform at 106 K and of the adduct CHI3 center dot 3(C9H7N). Iodoform as a building block of co-crystals. J Mol Struct. 2013;1036:305–10.

    Article  CAS  Google Scholar 

  12. Bielinski DM, Slusarski L, Glab P. Modification of rubber by iodoform. J Appl Polym Sci. 2007;105(1):177–89.

    Article  CAS  Google Scholar 

  13. Fulias A, Popoiu C, Vlase G, Vlase T, Onetiu D, Savoiu G, Simu G, Patrutescu C, Ilia G, Ledeti I. Thermoanalytical and spectroscopic study on methotrexate—active substance and tablet. Dig J Nanomater Bios. 2014;9:93–8.

    Google Scholar 

  14. Ledeti I, Vlase G, Vlase T, Fulias A. Kinetic analysis of solid-state degradation of pure pravastatin versus pharmaceutical formulation. J Therm Anal Calorim. 2015;121(3):1103–10.

    Article  CAS  Google Scholar 

  15. Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fulias A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113(3):1379–85.

    Article  CAS  Google Scholar 

  16. Fulias A, Vlase G, Grigorie C, Ledeti I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine: Part 1. Kinetic analysis of the active substances under non-isothermal conditions. J Therm Anal Calorim. 2013;113(1):265–71.

    Article  CAS  Google Scholar 

  17. Ledeti I, Fulias A, Vlase G, Vlase T, Bercean V, Doca N. Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory agents. J Therm Anal Calorim. 2013;114:1295–305.

    Article  CAS  Google Scholar 

  18. Fulias A, Ledeti I, Vlase G, Vlase T. Physico-chemical solid-state characterization of pharmaceutical pyrazolones: an unexpected thermal behaviour. J Pharm Biomed. 2013;81–82:44–9.

    Article  Google Scholar 

  19. Ivan C, Suta LM, Olariu T, Ledeti I, Vlase G, Vlase T, Olariu S, Matusz P, Fulias A. Preliminary kinetic study for heterogenous degradation of cholesterol-containing human biliary stones. Rev Chim Bucharest. 2015;66(8):1253–5.

    CAS  Google Scholar 

  20. Pupca G, Bucuras V, Vlase G, Vlase T, Fulias A, Ledeti I. Solid-state analysis of some urinary calculi. Rev Chim Bucharest. 2014;65(9):1058–62.

    CAS  Google Scholar 

  21. Ivan C, Ledeti I, Vlase G, Vlase T, Fulias A, Olariu S. Study of solid-state behaviour of some human gallstones. Rev Chim Bucharest. 2015;65(2):265–70.

    Google Scholar 

  22. Fuson RC, Tullock CW. The Haloform Reaction. XIV. An improved iodoform test. J Am Chem Soc. 1934;56(7):1638–40.

    Article  CAS  Google Scholar 

  23. Rybinski P, Janowska G, Antkowicz W, Krauze S. Thermal stability and flammability of butadiene-acrylonitrile rubber cross-linked with iodoform. J Therm Anal Calorim. 2005;81(1):9–13.

    Article  CAS  Google Scholar 

  24. Janowska G, Kucharska A. The influence of the method of butadiene rubbers cross-linking on their thermal properties. J Therm Anal Calorim. 2009;96(2):561–5.

    Article  CAS  Google Scholar 

  25. Rybinski P, Janowska G. Effect of the spatial network structure and cross-link density of diene rubbers on their thermal stability and fire hazard. J Therm Anal Calorim. 2014;117(1):377–86.

    Article  CAS  Google Scholar 

  26. Rybinski P, Kucharska-Jastrzaek A, Janowska G. Thermal properties of diene elastomers. Polym Sci Ser B. 2014;56(4):477–86.

    Article  CAS  Google Scholar 

  27. Chakrabartty SK. Alkaline hypohalite oxidations. In: Trahanovsky WH, editor. Oxidation in organic chemistry. New York: Academic Press; 1978. pp. 343–70.

  28. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  29. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  30. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  32. Akahira T, Sunose T. Joint convention of four electrical institutes. Research Report Chiba Institute of Technology. Sci Technol. 1971;16:22–31.

    Google Scholar 

  33. Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  34. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  35. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80:59–64.

    Article  CAS  Google Scholar 

  36. Vlase T, Vlase G, Doca N, Ilia G, Fulias A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2+ and Co2+ vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.

    Article  CAS  Google Scholar 

  37. Bodescu AM, Sirghie C, Vlase T, Doca N. Comparative kinetics studies of thermal decomposition of kalium, respectively natrium oxalato-oxo-diperoxo molibdate. J Therm Anal Calorim. 2013;113(3):1431–5.

    Article  CAS  Google Scholar 

  38. Šestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Ledeţi.

Additional information

Ionuţ Ledeţi and Marius Murariu have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledeţi, I., Murariu, M., Vlase, G. et al. Investigation of thermal-induced decomposition of iodoform. J Therm Anal Calorim 127, 565–570 (2017). https://doi.org/10.1007/s10973-016-5368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5368-z

Keywords

Navigation