Skip to main content
Log in

Investigation of steam explosion pretreatment on spectroscopic, thermodynamic, and textural properties of lignocellulosic biobased materials during a thermal degradation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The influence of steam explosion pretreatment in a basic medium on spectroscopic, morphological, and structural characterization on the thermal degradation of watermelon peels was investigated. Therefore, proximate, ultimate, thermo gravimetric analysis, Raman spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, N2 adsorption/desorption, and Fourier-transform infrared spectroscopy analyses of the treated and untreated watermelon peels were carried out. Subsequently, the thermal degradation experiments of the both materials were carried out from 25 to 1000 °C at heating rates of 10, 20, and 30 K/min in the presence of nitrogen. Pyrolysis data from thermogravimetric analysis were analyzed using iso-conversional models Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO), and the mechanism of reaction was predicted using Coats-Redfern model and multiple heating scan rate method. The results showed that the pretreatment leads to an increase in fixed carbon and volatile matter content and a decrease in the ash content compared to the untreated material. The activation energy obtained from the iterative procedure was estimated to be 103.75 and 199.60 kJ/mol using KAS model; 103.75 and 199.61 kJ/mol using FWO model for untreated and treated watermelon peels respectively. Gibbs free energy were 161.72 kJ/mol and 216.83 kJ/mol from KAS model, and 147.2 kJ/mol and 214.93 kJ/mol from FWO model for untreated and treated watermelon peels, respectively. This study by thermal analyses coupled with structural analyses has revealed the bioenergy potential of watermelon subject to steam explosion in basic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data from this study is available on request from the corresponding authors.

References

  1. Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E (2013) Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrolysis 99:170–177

    Article  CAS  Google Scholar 

  2. Ceylan S, Topçu Y (2014) Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Biores Technol 156:182–188

    Article  CAS  Google Scholar 

  3. Seifried D, Witzel W (2007) Renewable energy –the facts. Energieagentur Regio Freiburg p 221

  4. Aldo Vieira da Rosa (2005) Fundamentals of renewable energy processes. Elsevier academic press 446–610

  5. Kaltschmitt M, WolfgangStreicher AW (2007) Renewable energy: technology, economics and environment. Springer-Verlag Berlin Heidelberg p 535

  6. Debra Miller A (2011) Energy production and alternative energy. Library of congress cataloging-in-publication data 10–43

  7. Vertes AA, Qureshi N, Blaschek H, Hideaki Y (2010) Biomass to biofuels: strategies for global industries. Wiley p 547

  8. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol from agricultural wastes. An overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  9. Nguemfo Dongmo D, Ngomade SBL, Ngueteu MLT, Atemkeng CD, Fotsop CG, Tagne RFT, Atray N, Kamgaing T (2023) “Biodiesel production from high FFA Raphia vinifera oil as a potential non-edible feedstock: process optimization using response surface methodology”. Chem Africa. https://doi.org/10.1007/s42250-023-00814-0

  10. Ackom EK, Alemagi D, Ackom Nana B, Minang P, Tchoundjeu Z (2013) Modern bioenergy from agricultural and forestry residues in Cameroon: potential, challenges and the way forward. Energy Policy 63:101–113. https://doi.org/10.1016/j.enpol.2013.09.006

  11. Idris SS, Rahman NA et al (2012) Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol 123:581–591

    Article  CAS  PubMed  Google Scholar 

  12. Shen DK, Gu S, Luo KH, Bridgewater AV, Fang MX (2009) Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88:1024–1030

    Article  CAS  Google Scholar 

  13. Liang XH, Koziski JA (2000) Numerical modeling of combustion and pyrolysis of cellulosic biomass in therogravimetric system. Fuel 79:1477–1486

    Article  CAS  Google Scholar 

  14. García R, Pizarro C, Lavín AV, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresource Technol. https://doi.org/10.1016/j.biortech.2011.10.004;103,249-258

    Article  Google Scholar 

  15. Nindjio GFK, Tagne RFT, Jiokeng SLZ, Fotsop CG, Bopda A, Doungmo G, Temgoua RCT, Doench I, Njoyim ET, Tamo AK, Osorio-Madrazo A, Tonle IK (2022) Lignocellulosic-based materials from bean and pistachio pod wastes for dye-contaminated water treatment: optimization and modeling of indigo carmine sorption. Polymers 14:1–30. https://doi.org/10.3390/polym14183776

    Article  CAS  Google Scholar 

  16. Munir S, Daood SS, Nimmo W, Cunliffe AM, Bibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:14313–14318

    Article  Google Scholar 

  17. Mafo SGM, Tchuifon DRT, Ngakou CS, Fotsop CG, Kouteu PAN, Doungmo G, Ndifor-Angwafor GN, Anagho SG (2023) Study of the degradation of Bezaktiv Brilliant Blue by the Fenton process using a prepared ferromagnetic activated carbon from rubber seed hull as heterogeneous catalyst. Desalination Water Treat 287:200–213. https://doi.org/10.5004/dwt.2023.29358

    Article  CAS  Google Scholar 

  18. Fan Y, Lu D, Wang J, Kawamoto H (2022) Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design. Energy 239:122234

    Article  CAS  Google Scholar 

  19. Qian FP, Chyang CS, Huang KS, Tso J (2011) Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor. Bioresour Technol 102:1892–1898

    Article  CAS  PubMed  Google Scholar 

  20. Bahng M-K, Mukarakate C, Robichaud DJ, Nimlos MR (2009) Current technologies for analysis of biomass thermo-chemical processing: a review. Anal Chim Acta 651:117–138

    Article  CAS  PubMed  Google Scholar 

  21. Somba AV, Njanja E, Deffo G, Fotsop CG, Tajeu KY, Tchangou Njiemou AF, Eya’ane Meva F, Kamgaing T (2023) “Evaluation of silver nanoparticles based on fresh cocoa pods (Theobroma Cacao) extracts as new potential electrode material”. J Chem 14:Article ID 6447994. https://doi.org/10.1155/2023/6447994

  22. Duan D, Ruan R, Wang Y, Liu Y, Dai L, Zhao Y, Zhou Y, Wu Q (2018) Microwave-assisted acid pretreatment of alkali lignin: effect on characteristics and pyrolysis behavior. Biores Technol 251:57–62

    Article  CAS  Google Scholar 

  23. Kumar M, Mishra PK, Upadhyay SN (2020) Thermal degradation of rice husk: effect of pre-treatment on kinetic and thermodynamic parameters. Fuel 268:117164. https://doi.org/10.1016/j.fuel.2020.117164

    Article  CAS  Google Scholar 

  24. Fakayode OA, Wang Z, Wahia H, Mustapha AT, Zhou C, Ma H (2021) Higher heating value, exergy, pyrolysis kinetics and thermodynamic analysis of ultrasound-assisted deep eutectic solvent pretreated watermelon rind biomass. Biores Technol 332:125040

    Article  CAS  Google Scholar 

  25. Rasam S, Haghighi AM, Azizi K, Soria-Verdugo A, Moraveji MK (2020) Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel 280:118665

    Article  CAS  Google Scholar 

  26. ASTM E1756 – 08 (2015) Standard test method for determination of total solids in biomass. West Conshohocken, PA: ASTM International

  27. ASTM E872 - 82 (2013) Standard test method for volatile matter in the analysis of particulate wood fuels. West Conshohocken, PA: ASTM International

  28. ASTM E17551 – 01 (2015) Standard test method for ash in biomass. West Conshohocken, PA: ASTM International

  29. Kumar et al (2008) Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy 32:460–467

    Article  CAS  Google Scholar 

  30. Gai C et al (2013) The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol 127:298–305

    Article  CAS  PubMed  Google Scholar 

  31. Doyle CD (1965) Series approximations to the equation of thermogravimetric data. Nature 207(4994):290–291

    Article  ADS  CAS  Google Scholar 

  32. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886

    Article  CAS  Google Scholar 

  33. Gao Z, Amasaki I, Nakada M (2002) A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model. Thermochim Acta 385:95–103

    Article  CAS  Google Scholar 

  34. Senum GI, Yang RT (1977) Rational approximations of the integral of the Arrhenius function. J Therm Anal 11:445–447

    Article  Google Scholar 

  35. Genieva SD, Vlaev LT, Atanassov AN (2010) Study of the thermo-oxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim 99:551–561

    Article  CAS  Google Scholar 

  36. Li LQ, Chen DH (2004) Application of iso-temperature method of multiple rate to kinetic analysis. Dehydration for calcium oxalate monohydrate. J Therm Anal Calorim 78:283–93

    Article  Google Scholar 

  37. Seo DK, Park SS, Kim YT, Hwang J, Yu TU (2011) Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrol 92(1):209–216

    Article  CAS  Google Scholar 

  38. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN (2011) Thermal decomposition of poly (propylene sebacate) and poly (propylene azelate) biodegradable polyesters: evaluation of mechanisms using TGA, FTIR and GC/MS. J Anal Appl Pyrol 92(1):123–130

    Article  CAS  Google Scholar 

  39. Chai Q, Chen Z, Liao S, He Y, Li Y, Wu W, Li B (2012) Preparation of LiZn0. 9PO4: Mn0. 1· H2O via a simple and novel method and its non-isothermal kinetics using iso-conversional calculation procedure. Thermochim Acta 533:74–80

    Article  CAS  Google Scholar 

  40. Sronsri C, Noisong P, Danvirutai C (2014) Synthesis, non-isothermal kinetic and thermodynamic studies of the formation of LiMnPO4 from NH4MnPO4· H2O precursor. Solid State Sci 32:67–75

    Article  ADS  CAS  Google Scholar 

  41. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M (2008) A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol 81(2):253–262

    Article  CAS  Google Scholar 

  42. NzetchuenKouahou G, Fotsop CG, AdoumAmola L, DonlifackAtemkeng C, KamdemTamo A, TeikamKenda G, TiegamTagne RF, Kamgaing T (2023) Optimized preparation of activated carbon with high porosities based on puck shells (Afrostyrax lepidophyllus) by response surface methodology and physico-chemical characterization. R Soc Open Sci 10:230911. https://doi.org/10.1098/rsos.230911

    Article  ADS  CAS  Google Scholar 

  43. Ma Z, Sun Q, Ye J, Yao Q, Zhao C (2016) Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS. J Anal Appl Pyrol 117:116–124

    Article  CAS  Google Scholar 

  44. Mekuiko AZ, Tchuifon DRT, Kouteu PAN, Fotsop CG, Ngakou CS, Tiotsop HI, Bopda A, Tamo AK, Anagho SG (2023) Tailoring activated carbons based cocoa pods lignocellulosic materials for Reactive blue 19 adsorption: optimization, adsorption isotherm and kinetic investigation. Desalination Water Treat 300:144–157. https://doi.org/10.5004/dwt.2023.29708

    Article  CAS  Google Scholar 

  45. Bopda A, Mafo SGM, Ndongmo JN, Kenda GT, Fotsop CG, Kuete I-HT, Ngakou CS, Tchuifon DRT, Tamo AK, Nche GN-A (2022) Ferromagnetic biochar prepared from hydrothermally modified calcined mango seeds for Fenton-like degradation of indigo carmine. Carbone 8(81):1–18. https://doi.org/10.3390/c8040081

    Article  CAS  Google Scholar 

  46. Wang J, Laborie MPG, Wolcott MP (2005) Comparison of model-free kinetic methods for modeling the cure kinetics of commercial phenol–formaldehyde resins. Thermochim Acta 439(1–2):68–73

    Article  CAS  Google Scholar 

  47. Ahmad MS, Mehmood MA, Liu CG, Tawab A, Bai FW, Sak-daronnarong C, Xu J, Rahimuddin SA, Gull M (2018) Bioenergy potential of Wolfa arrhiza appraised through pyrolysis, kinetics, thermodynamic parameters, and TG-FTIR-MS study of the evolved gases. Bioresour Technol 253:297–303

    Article  CAS  PubMed  Google Scholar 

  48. Kenda GT, Fotsop CG, Tchuifon DRT, Kouteu PAN, Fanle TF, Anagho GS (2024) Building TiO2-doped magnetic biochars from Citrus Sinensis Peels as low-cost materials for improved dye degradation using a mathematical approach. Appl Surf Sci Adv 19:100554. https://doi.org/10.1016/j.apsadv.2023.100554

    Article  Google Scholar 

  49. Nikiel L, Jagodzinski PW (1993) Raman spectroscopic characterization of graphites: a re-evaluation of spectra/structure correlation. Carbon 31(8):1313–1317

    Article  CAS  Google Scholar 

  50. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565

    Article  CAS  Google Scholar 

  51. Robins LH, Farabaugh EN, Feldman A (1990) Line shape analysis of the Raman spectrum of diamond films grown by hot-filament and microwave-plasma chemical vapor deposition. J Mater Res 5(11):2456–2468

    Article  ADS  CAS  Google Scholar 

  52. Kenda GT, Kouteu PAN, Tchuifon DRT, Fotsop CG, Bopda A, Kuete I-HT, Nche GN-A, Anagho GS (2024) Green synthesis of magnetic biochars derived from biobased orange peelmaterials as sustainable heterogeneous catalytic supports for the Fenton process. Arabian J Chem 17:105502. https://doi.org/10.1016/j.arabjc.2023.105502

    Article  CAS  Google Scholar 

  53. Djioko FHK, Fotsop CG, Youbi GK, Nwanonenyi SC, Madu CA, Oguzie EE (2024) Unraveling the sorption mechanisms of ciprofloxacin on the surface of zeolite 4A (001) in aqueous medium by DFT and MC approaches. Appl Surf Sci Adv 19:100542. https://doi.org/10.1016/j.apsadv.2023.100542

    Article  Google Scholar 

  54. Kumar SV, Huang NM, Yusoff N, Lim HN (2013) High performance magnetically separable graphene/zinc oxide nanocomposite. Mater Lett 93:411–414

    Article  Google Scholar 

  55. Ngomade SBL, Fotsop CG, Nguena KLT, Tchummegne IK, Ngueteu MLT, Tamo AK, Ndifor-AngwaforNche G, Anagho SG (2023) Catalytic performances of CeO2@SBA-15 as nanostructured material for biodiesel production from Podocarpus falcatus oil. Chem Eng Res Design 194:789–800. https://doi.org/10.1016/j.cherd.2023.05.010

    Article  CAS  Google Scholar 

  56. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3):290–301

    Article  CAS  Google Scholar 

  57. Thangalazhy-Gopakumar S, Adhikari S, Gupta RB, Fernando SD (2011) Influence of pyrolysis operating conditions on bio-oil components: a microscale study in a pyroprobe. Energy Fuels 25(3):1191–1199

    Article  CAS  Google Scholar 

  58. Klemetsrud B, Eatherton D, Shonnard D (2017) Effects of lignin content and temperature on the properties of hybrid poplar bio-oil, char, and gas obtained by fast pyrolysis. Energy Fuel 31(3):2879–2886

    Article  CAS  Google Scholar 

  59. Mei Y, Zhang S, Wang H, Jing S, Hou T, Pang S (2020) Low-temperature deoxidization of lignin and its impact on liquid products from pyrolysis. Energy Fuel 34(3):3422–3428

    Article  CAS  Google Scholar 

  60. Zhao S, Liu M, Zhao L, Zhu L (2018) Influence of interactions among three biomass components on the pyrolysis behavior. Ind Eng Chem Res 57(15):5241–5249

    Article  CAS  Google Scholar 

  61. Ngueabouo AMS, Tagne RFT, Tchuifon DRT, Fotsop CG, Tamo AK, Anagho GS (2022) Strategy for optimizing the synthesis and characterization of activated carbons obtained by chemical activation of coffee husk. Mater Adv 3:8361–8374. https://doi.org/10.1039/d2ma00591c

    Article  CAS  Google Scholar 

  62. Shao L, Zhang X, Chen F, Xu F (2017) Fast pyrolysis of Kraft lignins fractionated by ultrafltration. J Anal Appl Pyrol 128:27–34

    Article  CAS  Google Scholar 

  63. Liu C, Hu J, Zhang H, Xiao R (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870

    Article  CAS  Google Scholar 

  64. Idris SS, Abd Rahman N, Ismail K, Alias AB, Abd Rashid Z, Aris MJ (2010) Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Biores Technol 101(12):4584–4592

    Article  CAS  Google Scholar 

  65. Chutia RS, Kataki R, Bhaskar T (2013) Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Biores Technol 139:66–72

    Article  CAS  Google Scholar 

  66. Li J, Bai X, Fang Y, Chen Y, Wang X, Chen H et al (2020) Comprehensive mechanism of initial stage for lignin pyrolysis. Combust Flame 215:1–9

    Article  ADS  CAS  Google Scholar 

  67. Gašparovič L, Labovský J, Markoš J, Jelemenský L (2012) Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q 26(1):45–53

    Google Scholar 

  68. Nguena KLT, Fotsop CG, Ngomade SBL, Tamo AK, Madu CA, Ezema FI, Oguzie EE (2023) Mathematical modeling approach for the green synthesis of high-performance nanoporous zeolites Na-X optimized for water vapor sorption. Mater Today Commun 37:107406. https://doi.org/10.1016/j.mtcomm.2023.107406

    Article  CAS  Google Scholar 

  69. Mafo SGM, Kouteu PAN, Tchuifon DRT, Fotsop CG, Zue MM, Kenda GT, Bopda A, Tiotsop HI, Ndifor-Angwafor GN, Mouangue MR, Anagho SG (2023) Low-cost magnetic carbons-based rubber seed husks materials for highly efficient removal for reactive black 5 and reactive blue 19 textile dyes from wastewater. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2023.2269857

    Article  Google Scholar 

  70. Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Biores Technol 250:422–428

    Article  CAS  Google Scholar 

  71. Mallick D, Poddar MK, Mahanta P, Moholkar VS (2018) Discernment of synergism in pyrolysis of biomass blends using thermo-gravimetric analysis. Biores Technol 261:294–305

    Article  CAS  Google Scholar 

  72. Agnihotri N, Gupta GK, Mondal MK (2022) Thermo-kinetic analysis, thermodynamic parameters and comprehensive pyrolysis index of Melia azedarach sawdust as a genesis of bioenergy. Biomass Convers Bioref 14:1–18. https://doi.org/10.1007/s13399-022-02524-y

  73. Jagtap A, Kalbande SR (2022) Investigation on pyrolysis kinetics and thermodynamic parameters of soybean straw: a comparative study using model-free methods. Biomass Convers Bioref 1–12. https://doi.org/10.1007/s13399-021-02228-9

  74. Barneto AG, Carmona JA, Alfonso JEM, Serrano RS (2010) Simulation of the thermogravimetry analysis of three non-wood pulps. Biores Technol 101(9):3220–3229

    Article  CAS  Google Scholar 

  75. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  CAS  Google Scholar 

  76. Daugaard DE, Brown RCD (2003) Enthalpy for pyrolysis for several types of biomass. Energy Fuels 17:934–939

    Article  CAS  Google Scholar 

  77. Akyurek Z (2019) Sustainable valorization of animal manure and recycled polyester: co-pyrolysis synergy. Sustainability 11:2280

    Article  CAS  Google Scholar 

  78. Ningham, Singh (2011) Production of liquid biofuels from renewable resources. Progress Energy Combust Sci 37:52-68

  79. Dhyani V, Kumar J, Bhaskar T (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Biores Technol 245:1122–1129

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.G.F., D.R.T.T. and I.K.T.; methodology: C.G.F., D.R.T.T., P.A.N.K, K.L.T.N., D.N.D., S.G.M., and F.H.K.D.; software: C.G.F., D.R.T.T., F.H.K.D., A.K.T., and R.M.M.; validation: C.G.F., D.R.T.T., P.A.N.K., K.L.T.N., A.K.T., and I.K.T.; investigation: C.G.F., D.R.T.T., P.A.N.K., K.L.T.N., D.N.D., S.G.M.M., F.H.K.D., and R.M.M.; editing—preparation of the original version: C.G.F., D.R.T.T., P.A.N.K., K.L.T.N., D.N.D., S.G.M.M., and F.H.K.D.; writing—revision and editing: C.G.F., D.R.T.T., P.A.N.K., K.L.T.N., F.H.K.D., A.K.T., and I.K.T.; supervision and project administration: I.K.T.

Corresponding authors

Correspondence to Cyrille Ghislain Fotsop, Donald Raoul Tchuifon Tchuifon or Ignas Kenfack Tonle.

Ethics declarations

Ethical approval

This paper does not contain any human or animal studies.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 332 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotsop, C.G., Tchuifon Tchuifon, D.R., Kouteu, P.A.N. et al. Investigation of steam explosion pretreatment on spectroscopic, thermodynamic, and textural properties of lignocellulosic biobased materials during a thermal degradation. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05331-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05331-9

Keywords

Navigation