Skip to main content
Log in

TG-FTIR kinetic study of the thermal cleaning of wood laminated flooring waste

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The enhancement of wood waste is a promising solution for the production of energy from renewable resources. Nevertheless, wood waste often needs a preliminary treatment step to remove pollutants present in the material. The thermal cleaning of wood laminated flooring (WLF) waste is studied through thermogravimetric and FTIR analyses. As a first step, it has been shown, through non iso-thermal tests, that degradation temperature ranges for wood and additives (aminoplast resins) are different, making it possible to proceed to a thermal cleaning through a low temperature pyrolysis. It has also been highlighted that chemical linkages between the different components of WLF waste influence their own thermal behaviour making it difficult to predict the thermal behaviour of the whole material. Fourier transform infra-red spectrometry analyses reveal that NH3 and HNCO are the main nitrogen-containing gases produced during pyrolysis, which highlights the pyrolysis efficiency in terms of nitrogen (i.e., resin) removing. Lastly, thermal degradation of wood and WLF has been modelled to provide information for reactor designing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Granada E, Eguía P, Comesaña JA, Patiño D, Porteiro J, Miguez JL. Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels. J Therm Anal Calorim. 2013;113:569–78.

    Article  CAS  Google Scholar 

  2. Zhao H, Yan H, Zhang C, Sun B, Zhang Y, Dong S, Xue Y, Qin S. Thermogravimetry study of pyrolytic characteristics and kinetics of the giant wetland plant Phragmites australis. J Therm Anal Calorim. 2012;110:611–7.

    Article  CAS  Google Scholar 

  3. Sebio-Puñal T, Naya S, López-Beceiro J, Tarrío-Saavedra J, Artiaga R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim. 2012;109:1163–7.

    Article  Google Scholar 

  4. Gašparovič L, Koreňová Z, Jelemenskỳ L. Kinetic study of wood chips decomposition by TGA. Chem Pap. 2010;64:174–81.

    Article  Google Scholar 

  5. Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U. A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrol. 2003;68–69:231–49.

    Article  Google Scholar 

  6. Whitty K, Kullberg M, Sorvari V, Backman R, Hupa M. Influence of pressure on pyrolysis of black liquor: 2. Char yields and component release. Bioresour Technol. 2008;99:671–9.

    Article  CAS  Google Scholar 

  7. Naqvi M, Yan J, Dahlquist E. Black liquor gasification integrated in pulp and paper mills: a critical review. Bioresour Technol. 2010;101:8001–15.

    Article  CAS  Google Scholar 

  8. Yang H, Yan R, Chin T, Liang DT, Chen H, Zheng C. Thermogravimetric analysis—Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuel. 2004;18:1814–21.

    Article  CAS  Google Scholar 

  9. Helsen L, Van den Bulck E, Mullens S, Mullens J. Low-temperature pyrolysis of CCA-treated wood: thermogravimetric analysis. J Anal Appl Pyrol. 1999;52:65–86.

    Article  CAS  Google Scholar 

  10. Kercher AK, Nagle DC. TGA modeling of the thermal decomposition of CCA treated lumber waste. Wood Sci Technol. 2001;35:325–41.

    Article  CAS  Google Scholar 

  11. Reina J, Velo E, Puigjaner L. Kinetic study of the pyrolysis of waste wood. Ind Eng Chem Res. 1998;37:4290–5.

    Article  CAS  Google Scholar 

  12. Bimer J, Sałbut PD, Berłożecki S, Boudou J-P, Broniek E, Siemieniewska T. Modified active carbons from precursors enriched with nitrogen functions: sulfur removal capabilities. Fuel. 1998;77:519–25.

    Article  CAS  Google Scholar 

  13. De Jong W, Pirone A, Wójtowicz MA. Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel. 2003;82:1139–47.

    Article  Google Scholar 

  14. Barker AV, Volk RJ. Determination of ammonium, amide, amino, and nitrate nitrogen in plant extracts by a modified Kjeldahl method. Anal Chem. 1964;36:439–41.

    Article  CAS  Google Scholar 

  15. Girods P, Dufour A, Rogaume Y, Rogaume C, Zoulalian A. Thermal removal of nitrogen species from wood waste containing urea formaldehyde and melamine formaldehyde resins. J Hazard Mater. 2008;159:210–21.

    Article  CAS  Google Scholar 

  16. Girods P, Dufour A, Rogaume Y, Rogaume C, Zoulalian A. Comparison of gasification and pyrolysis of thermal pre-treated wood board waste. J Anal Appl Pyrol. 2009;85:171–83.

    Article  CAS  Google Scholar 

  17. Girods P, Rogaume Y, Dufour A, Rogaume C, Zoulalian A. Two-step process of thermo-chemical conversion of wood waste contaminated by aminoplast resins. Int J Chem React Eng. 2008;6:1542–6580.

    Google Scholar 

  18. Li J, Li S. Pyrolysis of medium density fiberboard impregnated with phenol–formaldehyde resin. J Wood Sci. 2006;52:331–6.

    Article  CAS  Google Scholar 

  19. Schanzer C, Bührer P. Investigating the curing of amino resins with TGA-MS and TGA-FTIR. Spectro Eur. 2002;6:13–5.

    Google Scholar 

  20. Hirata T, Kawamoto S, Okuro A. Pyrolysis of melamine–formaldehyde and urea–formaldehyde resins. J Appl Polym Sci. 1991;42:3147–63.

    Article  CAS  Google Scholar 

  21. Jiang X, Li C, Chi Y, Yan J. TG-FTIR study on urea–formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater. 2010;173:205–10.

    Article  CAS  Google Scholar 

  22. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Therm Acta. 2004;424:131–42.

    Article  CAS  Google Scholar 

  23. Remko M, Rode BM. Ab initio study of decomposition of carbamic acid and its thio and sila derivatives. J Mol Struct. 1995;339:125–31.

    Article  CAS  Google Scholar 

  24. Li S, Lyons-Hart J, Banyasz J, Shafer K. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel. 2001;80:1809–17.

    Article  CAS  Google Scholar 

  25. Di Blasi C. Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem Eng Sci. 1996;51:1121–32.

    Article  Google Scholar 

  26. Grioui N, Halouani K, Zoulalian A, Halouani F. Thermogravimetric analysis and kinetics modeling of isothermal carbonization of olive wood in inert atmosphere. Therm Acta. 2006;440:23–30.

    Article  CAS  Google Scholar 

  27. Chen JP, Isa K. Thermal decomposition of urea and urea derivatives by simultaneous TG/(DTA)/MS. J Mass Spectrom. 1998;46:299–303.

    CAS  Google Scholar 

  28. Quirino WF. Valorisation énergétique de déchets de bois par pyrolyse étagée. Université Henri Poincaré, Nancy 1, 2000.

  29. Yu Q-Z, Brage C, Chen G-X, Sjöström K. The fate of fuel-nitrogen during gasification of biomass in a pressurised fluidised bed gasifier. Fuel. 2007;86:611–8.

    Article  CAS  Google Scholar 

  30. Tan LL, Li C-Z. Formation of NO x and SO x precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis. Fuel. 2000;79:1883–9.

    Article  CAS  Google Scholar 

  31. Lemonon J, Girods P, Rogaume C, Perrin D, Rogaume Y. Nitrogen removal from wood laminated flooring waste by low-temperature pyrolysis. Waste Biomass Valor. 2014;5:199–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work could not have been performed without, Financial support from the French “Ministère de l’Enseignement Supérieur et de la Recherche”. Financial support from “Région Lorraine” for the equipment and instrumentation. The WLF and components supplied by Unilin SV. The authors wish to thank these organisations for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Girods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debal, M., Girods, P., Lémonon, J. et al. TG-FTIR kinetic study of the thermal cleaning of wood laminated flooring waste. J Therm Anal Calorim 118, 141–151 (2014). https://doi.org/10.1007/s10973-014-3942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3942-9

Keywords

Navigation