Skip to main content
Log in

A novel approach for assessment of thermal stability of organic azides through prediction of their temperature of maximum mass loss

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organic azides contain covalent azide groups, which can decompose with the slightest input of energy from heat and light. A novel, reliable and simple method is introduced to predict the temperature at which maximum of mass loss for organic azides (T dmax) was occurred. It requires only molecular structure of a desired organic azide without using computer codes and complex molecular descriptors. The new model is based on the presence of several molecular fragments as well as the contribution of the number of hydrogen and nitrogen atoms. Experimental data of 53 organic azides containing various molecular structures are used to derive new correlation. Statistical parameters including root mean squared deviation, mean absolute error and maximum of errors of the new model are 8.49, 6.99 and 18.11 K, respectively, which confirm high reliability of the new method. The method has been tested for further five organic azides including complex molecular structures, which give good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. New York: Wiley-VCH; 2010.

    Book  Google Scholar 

  2. Klapötke TM. Chemistry of high-energy materials. 3rd ed. Berlin: De Gruyter; 2015.

    Book  Google Scholar 

  3. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, et al. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161(2):589–607.

    Article  CAS  Google Scholar 

  4. Keshavarz MH, Moradi S, Ebrahimi Saatluo B, Rahimi H, Madram AR. A simple accurate model for prediction of deflagration temperature of energetic compounds. J Therm Anal Calorim. 2013;112(3):1453–63.

    Article  CAS  Google Scholar 

  5. Liu Y, Jiang Y-T, Zhang T-L, Feng C-G, Yang L. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. J Therm Anal Calorim. 2015;119(1):659–70.

    Article  CAS  Google Scholar 

  6. Kazemi A, Hayaty M, Mousaviazar A, Samani KA, Keshavarz MH. The synthesis and characterization of polyvinyl nitrate as an energetic polymer and study of its thermal behavior. J Therm Anal Calorim. 2015;119(1):613–8.

    Article  CAS  Google Scholar 

  7. Huang H, Shi Y, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121(2):705–9.

    Article  CAS  Google Scholar 

  8. Singh CP, Singh A, Daniliuc CG, Kumar B, Singh G. Preparation, crystal structure and thermal studies of cadmium perchlorate complex with 2,2′-bipyridine. J Therm Anal Calorim. 2015;121(2):633–40.

    Article  CAS  Google Scholar 

  9. Zhang G, Zhang J, Wang F, Li H. Thermal decomposition and kinetics studies on the poly (2,2-dinitropropyl acrylate) and 2,2-dinitropropyl acrylate–2,2-dinitrobutyl acrylate copolymer. J Therm Anal Calorim. 2015;122(1):419–26.

    Article  CAS  Google Scholar 

  10. Singh S, Singh G, Kulkarni N, Mathe V, Bhoraskar S. Synthesis, characterization and catalytic activity of Al/Fe2O3 nanothermite. J Therm Anal Calorim. 2015;119(1):309–17.

    Article  CAS  Google Scholar 

  11. Izato Y-I, Miyake A. Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J Therm Anal Calorim. 2015;121(1):287–94.

    Article  CAS  Google Scholar 

  12. Wang X-J, You J-Z. Study on the molecular structure and thermal stability of pyrimidine nucleoside analogs. J Therm Anal Calorim. 2015;120(1):1009–25.

    Article  CAS  Google Scholar 

  13. Keshavarz MH, Bashavard B, Goshadro A, Dehghan Z, Jafari M. Prediction of heats of sublimation of energetic compounds using their molecular structures. J Therm Anal Calorim. 2015;120(3):1941–51.

    Article  CAS  Google Scholar 

  14. Keshavarz MH, Ghani K, Asgari A. A suitable computer code for prediction of sublimation energy and deflagration temperature of energetic materials. J Therm Anal Calorim. 2015;121(2):675–81.

    Article  CAS  Google Scholar 

  15. Keshavarz MH. A new computer code for prediction of enthalpy of fusion and melting point of energetic materials. Propellants Explos Pyrotech. 2015;40(1):150–5.

    Article  CAS  Google Scholar 

  16. Keshavarz MH, Zohari N, Seyedsadjadi SA. Validation of improved simple method for prediction of activation energy of the thermal decomposition of energetic compounds. J Therm Anal Calorim. 2013;114(2):497–510.

    Article  CAS  Google Scholar 

  17. Ando T, Fujimoto Y, Morisaki S. Analysis of differential scanning calorimetric data for reactive chemicals. J Hazard Mater. 1991;28(3):251–80.

    Article  CAS  Google Scholar 

  18. Keshavarz MH, Zohari N, Seyedsadjadi SA. Relationship between electric spark sensitivity and activation energy of the thermal decomposition of nitramines for safety measures in industrial processes. J Loss Prev Process Ind. 2013;26(6):1452–6.

    Article  CAS  Google Scholar 

  19. Keshavarz MH, Hayati M, Ghariban‐Lavasani S, Zohari N. Relationship between activation energy of thermolysis and friction sensitivity of cyclic and acyclic nitramines. Zeitschrift für anorganische und allgemeine Chemie. 2015;642(2):182–8.

    Article  Google Scholar 

  20. Keshavarz MH, Keshavarz Z. Relation between electric spark sensitivity and impact sensitivity of nitroaromatic energetic compounds. Zeitschrift für anorganische und allgemeine Chemie. 2016;642(4):335–42.

    Article  CAS  Google Scholar 

  21. Fayet G, Del Rio A, Rotureau P, Joubert L, Adamo C. Predicting the thermal stability of nitroaromatic compounds using chemoinformatic tools. Mol Inform. 2011;30(6–7):623–34.

    Article  CAS  Google Scholar 

  22. Fayet G, Rotureau P, Adamo C. On the development of QSPR models for regulatory frameworks: the heat of decomposition of nitroaromatics as a test case. J Loss Prev Process Ind. 2013;26(6):1100–5.

    Article  Google Scholar 

  23. Fayet G, Rotureau P, Joubert L, Adamo C. On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations. J Hazard Mater. 2009;171(1):845–50.

    Article  CAS  Google Scholar 

  24. Fayet G, Rotureau P, Joubert L, Adamo C. QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors. J Mol Model. 2010;16(4):805–12.

    Article  CAS  Google Scholar 

  25. Fayet G, Rotureau P, Joubert L, Adamo C. Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms. J Mol Model. 2011;17(10):2443–53.

    Article  CAS  Google Scholar 

  26. Keshavarz MH, Ghani K, Asgari A. A new method for predicting heats of decomposition of nitroaromatics. Zeitschrift für anorganische und allgemeine Chemie. 2015;641(10):1818–23.

    Article  CAS  Google Scholar 

  27. Prana V, Rotureau P, Fayet G, André D, Hub S, Vicot P, et al. Prediction of the thermal decomposition of organic peroxides by validated QSPR models. J Hazard Mater. 2014;276:216–24.

    Article  CAS  Google Scholar 

  28. Zohari N, Keshavarz MH, Dalaei Z. Prediction of decomposition onset temperature and heat of decomposition of organic peroxides using simple approaches. J Therm Anal Calorim. 2016;125(2):887–96.

    Article  CAS  Google Scholar 

  29. Klapotke TM, Rienacker CM. Drophammer test investigations on some inorganic and organic azides. Propellants Explos Pyrotech. 2001;26(1):43–7.

    Article  CAS  Google Scholar 

  30. Tornieporth-Oetting IC, Klapötke TM. Covalent inorganic azides. Angew Chem Int Ed Engl. 1995;34(5):511–20.

    Article  CAS  Google Scholar 

  31. Bräse S, Banert K. Organic azides: syntheses and applications. West Sussex: Wiley; 2010.

    Google Scholar 

  32. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Atifeh SM. Effect of functional group on thermal stability of cellulose derivative energetic polymers. Fuel. 2012;95:394–9.

    Article  CAS  Google Scholar 

  33. Keshavarz M, Pouretedal H, Semnani A. Relationship between thermal stability and molecular structure of polynitro arenes. Indian J Eng Mater Sci. 2009;16(1):61.

    CAS  Google Scholar 

  34. Fischer N, Klapötke TM, Reymann M, Stierstorfer J. Nitrogen-rich salts of 1H, 1′H-5, 5′-Bitetrazole-1, 1′-diol: energetic materials with high thermal stability. Eur J Inorg Chem. 2013;2013(12):2167–80.

    Article  CAS  Google Scholar 

  35. Huang H, Zhou Z, Liang L, Song J, Wang K, Cao D, et al. Nitrogen-rich energetic dianionic salts of 3,4-bis (1H-5-tetrazolyl) furoxan with excellent thermal stability. Zeitschrift für anorganische und allgemeine Chemie. 2012;638(2):392–400.

    Article  CAS  Google Scholar 

  36. Jin B, Shen J, Peng R, Shu Y, Chu S, Dong H. Synthesis, characterization, thermal stability and mechanical sensitivity of polyvinyl azidoacetate as a new energetic binder. J Polym Res. 2012;19(10):1–9.

    Article  Google Scholar 

  37. Jin B, Shen J, Peng R, Shu Y, Tan B, Chu S, et al. Synthesis, characterization, thermal stability and sensitivity properties of the new energetic polymer through the azidoacetylation of poly (vinyl alcohol). Polym Degrad Stab. 2012;97(4):473–80.

    Article  CAS  Google Scholar 

  38. Pan Y, Li J, Cheng B, Zhu W, Xiao H. Computational studies on the heats of formation, energetic properties, and thermal stability of energetic nitrogen-rich furazano [3, 4-b] pyrazine-based derivatives. Comput Theor Chem. 2012;992:110–9.

    Article  CAS  Google Scholar 

  39. Zohari N, Keshavarz MH, Seyedsadjadi SA. A novel method for risk assessment of electrostatic sensitivity of nitroaromatics through their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;115(1):93–100.

    Article  CAS  Google Scholar 

  40. Keshavarz MH, Moradi S, Saatluo BE, Rahimi H, Madram AR. A simple accurate model for prediction of deflagration temperature of energetic compounds. J Therm Anal Calorim. 2013;112(3):1453–63.

    Article  CAS  Google Scholar 

  41. Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162(2):1557–62.

    Article  CAS  Google Scholar 

  42. Keshavarz MH, Pouretedal HR, Shokrolahi A, Zali A, Semnani A. Predicting activation energy of thermolysis of polynitro arenes through molecular structure. J Hazard Mater. 2008;160(1):142–7.

    Article  CAS  Google Scholar 

  43. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Ghanbarzadeh M, Azarniamehraban J. A new computer code for assessment of energetic materials with crystal density, condensed phase enthalpy of formation, and activation energy of thermolysis. Propellants, Explos, Pyrotech. 2013;38(1):95–102.

    Article  CAS  Google Scholar 

  44. Palm WJ. Introduction to MATLAB 7 for engineers. 3rd ed. New York: McGraw-Hill Education; 2010.

    Google Scholar 

  45. Stadlbauer W, Hojas G. Study of the thermal behavior of azidohetarenes with differential scanning calorimetry. J Biochem Biophys Methods. 2002;53(1):89–99.

    Article  CAS  Google Scholar 

  46. Kumari D, Anjitha S, Pant CS, Patil M, Singh H, Banerjee S. Synthetic approach to novel azido esters and their utility as energetic plasticizers. RSC Adv. 2014;4(75):39924–33.

    Article  CAS  Google Scholar 

  47. Cardillo P, Gigante L, Lunghi A, Zanirato P. Revisiting the thermal decomposition of five ortho-substituted phenyl azides by calorimetric techniques. J Therm Anal Calorim. 2010;100(1):191–8.

    Article  CAS  Google Scholar 

  48. Katritzky A, Scriven E. Organic azides: syntheses and applications. J Am Chem Soc. 2010;132(34):12156.

    Article  CAS  Google Scholar 

  49. Pant CS, Wagh RM, Nair JK, Gore GM, Venugopalan S. Synthesis and characterization of two potential energetic azido esters. Propellants Explos Pyrotech. 2006;31(6):477–81.

    Article  CAS  Google Scholar 

  50. Pant CS, Wagh RM, Nair JK, Gore GM, Thekkekara M, Venugopalan S. Synthesis and characterization of first generation dendritic azidoesters. Propellants Explos Pyrotech. 2007;32(6):461–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Iran University of Science and Technology for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, M.H., Mousaviazar, A. & Hayaty, M. A novel approach for assessment of thermal stability of organic azides through prediction of their temperature of maximum mass loss. J Therm Anal Calorim 129, 1659–1665 (2017). https://doi.org/10.1007/s10973-017-6313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6313-5

Keywords

Navigation