Skip to main content
Log in

Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of ammonium nitrate (AN) and potassium chloride (KCl) mixtures was investigated. The thermal properties were studied using differential scanning calorimetry (DSC), and the evolved gas was analyzed using thermogravimetry with mass spectrometry and pressurized DSC coupled with mass spectrometry (TG–DTA–MS and PDSC–MS). DSC measurements of AN/KCl mixtures in sealed and sealed-separated sample pans showed a sharp exothermic decomposition and lower onset temperature than pure AN, whereas AN/KCl in an open pan exhibited an endothermic reaction. In the sealed-separated pan, a separator with a pinhole divided the KCl and AN physically and the evolved gas could interact with both AN and KCl. TG–DTA–MS results revealed that HCl gas was evolved from AN/KCl, which indicated that the reaction of KCl with HNO3 dissociated from AN formed HCl, and subsequent destabilization of AN. However, the TG–DTA–MS results did not indicate the violent exothermic reaction due to using an open pan and ordinary pressure conditions. PDSC–MS was used to observe two exothermic reactions of AN/KCl and analyze the evolved gases from the reactions. A violent first exothermic reaction was accompanied by a large amount of N2 and N2O gases without H2O, and a second exothermic reaction accompanied by H2O, N2O, and other gases occurred subsequently. The reactions are \( {\text{HCl }} + {\text{HNO}}_{ 3} \to {\text{NO}}_{ 2} {\text{Cl }} + {\text{H}}_{ 2} {\text{O }} \to {\text{Cl }} + {\text{NO}}_{ 2} + {\text{H}}_{ 2} {\text{O}} \), which have a lower energy barrier by 103 kJ mol−1 than the energy barrier that is needed for HNO3 homolysis cleavage, which is triggered by pure AN decomposition, \( {\text{HNO}}_{ 3} \to {\text{OH}} + {\text{NO}}_{ 2} \). We therefore concluded that AN reacts with KCl to produce Cl radicals via HCl and NO2Cl, and the Cl radical triggers a radical chain reaction of AN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oommen C, Jain SR. Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater. 1999;67:253–81.

    Article  CAS  Google Scholar 

  2. Oxley JC, Smith JL, Wang W. Compatibility of ammonium nitrate with monomolecular explosives. Part II Nitroarenes. J Phys Chem. 1994;98:3901–7.

    Article  CAS  Google Scholar 

  3. Marlair G, Kordek M. Safety and security issues relating to low capacity storage of AN-based fertilizers. J Hazard Mater. 2005;A123:13–28.

    Article  Google Scholar 

  4. Chemical Safety Board. Preliminary Findings of the U.S. Chemical Safety Board from its Investigation of the West Fertilizer Explosion and Fire. 2014. http://www.csb.gov/assets/1/19/West_Preliminary_Fin dings.pdf. Accessed 11 March 2014.

  5. Dechy N, Bourdeaux T, Ayrault A, Kordek M, Coze JL. First lessons of the Toulouse ammonium nitrate disaster, 21st September 2001, AZF plant. France. J Hazard Mater. 2004;111:131–8.

    Article  CAS  Google Scholar 

  6. Brower KR, Oxley JC, Tewari MP. Evidence for hemolytic decomposition of ammonium nitrate at high temperature. J Phys Chem. 1989;93:4029–33.

    Article  CAS  Google Scholar 

  7. Keenan AG, Notz K, Franco NB. Synergistic catalysis of ammonium nitrate decomposition. J Am Chem Soc. 1969;91:3168–71.

    Article  CAS  Google Scholar 

  8. Macneil JH, Zhang H, Berseth P, Trogler WC. Catalytic decomposition of ammonium nitrate in superheated aqueous solutions. J Am Chem Soc. 1997;119:9738–44.

    Article  CAS  Google Scholar 

  9. Li XR, Koseki H. Study on the contamination of chlorides in ammonium nitrate. Process Saf Environ Prot. 2005;83(B1):31–7.

    Article  CAS  Google Scholar 

  10. Sun J, Sun Z, Wang Q, Ding H, Wang T, Jiang C. Catalytic effects of inorganic acids on the decomposition of ammonium nitrate. J Hazard Mater. 2005;B127:204–10.

    Article  Google Scholar 

  11. Kajiyama K, Izato Y, Miyake A. Thermal characteristics of ammonium nitrate, carbon, and copper (II) oxide mixtures. J Therm Anal Calorim. 2013;113:1475–80.

    Article  CAS  Google Scholar 

  12. Oxley JC, Smith JL, Naik S, Moran J. Decompositions of urea and guanidine nitrate. J Energ Mater. 2009;27:17–39.

    Article  CAS  Google Scholar 

  13. Izato Y, Date S, Miyake A. Combustion characteristics of ammonium nitrate and carbon mixtures based on a thermal decomposition mechanism. Propellants Explos Pyrotech. 2013;38:129–35.

    Article  CAS  Google Scholar 

  14. Sinditskii VP, Egorshev VY, Levshenkov AI, Serushkin VV. Ammonium nitrate: combustion mechanism and the role of additives. Propellants Explos Pyrotech. 2005;30:269–80.

    Article  CAS  Google Scholar 

  15. Koroban VA. Thermal decomposition features of ammonium nitrate and its boron mixture under high pressures. Propellants Explos Pyrotech. 1994;19:307–10.

    Article  CAS  Google Scholar 

  16. Patil DG, Jain SR, Brill TB. Thermal decomposition of energetic materials 56. On the fast thermolysis mechanism of ammonium nitrate and its mixtures with magnesium and carbon. Propellants Explos Pyrotech. 1992;17:99–105.

    Article  CAS  Google Scholar 

  17. Miyake A, Izato Y. Thermal decomposition behaviors of ammonium nitrate and carbon mixtures. Int J Energ Mater Chem Propuls. 2010;9:467–75.

    Google Scholar 

  18. Mirvakili A, Samimi F, Jahanmiri A. Simultaneous ammonium nitrate decomposition and NOX emission reduction in a novel configuration of membrane reactor: a simulation study. J Ind Eng Chem. 2014;20:2452–62.

    Article  CAS  Google Scholar 

  19. Skarlis SA, Nicolle A, Berthout D, Dujardin C, Granger P. Combined experimental and kinetic modeling approachies of ammonium nitrate thermal decomposition. Thermochim Acta. 2014;584:58–66.

    Article  CAS  Google Scholar 

  20. Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA. Combustion of energetic materials controlled by condensed-phase reactions. Combust Explos Shock Waves. 2012;48:81–99.

    Article  Google Scholar 

  21. Cagnina S, Rotureau P, Fayet G, Adamo C. The ammonium nitrate and its mechanism of decomposition in the gas phase: a theoretical study and a DFT benchmark. Phys Chem Chem Phys. 2013;15:10849–59.

    Article  CAS  Google Scholar 

  22. Izato Y, Miyake A, Echigoya H. Influence of the physical properties of carbon on the thermal decomposition behavior of ammonium nitrate and carbon mixtures. Sci Technol Energ Mater. 2009;70:101–4.

    CAS  Google Scholar 

  23. Wada Y, Hori K, Arai M. Combustion mechanism of mixtures of guanidine nitrate, ammonium nitrate, and basic copper nitrate. Sci Technol Energ Mater. 2010;71:83–7.

    CAS  Google Scholar 

  24. Hasue K, Miura R, Yoshitake K. Equation for burning rate as a function of pressure and temperature for potassium nitrate-phase stabilized ammonium nitrate/1H-tetrazole mixture. Sci Technol Energ Mater. 2013;74:113–7.

    CAS  Google Scholar 

  25. Fujisato K, Habu H, Miyake A, Hori K. Thermal decomposition of ammonium nitrate modeling of thermal dissociation in thermal analysis. Sci Technol Energ Mater. 2014;75:28–36.

    CAS  Google Scholar 

  26. Ikeda K, Shiraishi Y, Date S. Burning characteristics of some azodicarbonamide/ammonium nitrate/additive mixtures. Sci Tech Energ Mater. 2014;75:59–63.

    CAS  Google Scholar 

  27. Ikeda K, Doi A, Date S. Burning characteristics of some azodicarbonamide/ammonium nitrate/additive mixtures (II). Sci Technol Energ Mater. 2014;75:83–5.

    Google Scholar 

  28. Izato Y, Kajiyama K, Miyake A. Thermal decomposition mechanism of ammonium nitrate and copper (II) oxide mixtures. Sci Technol Energ Mater. 2014;75:128–33.

    Google Scholar 

  29. Fenter FF, Caloz F, Rossi MJ. Kinetics of nitric acid uptake by salt. J Phys Chem. 1994;98:9801–10.

    Article  CAS  Google Scholar 

  30. NIST chemistry web book. http://webbook.nist.gov/chemistry/. Accessed 3 Sep 2014.

  31. Friedel RA, Shultz JL, Sharkey AG. Mass spectrum of nitric acid. Anal Chem. 1959;31:1128.

    Article  CAS  Google Scholar 

  32. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data. 1982;11:67–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ichiro Izato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izato, Yi., Miyake, A. Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J Therm Anal Calorim 121, 287–294 (2015). https://doi.org/10.1007/s10973-015-4739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4739-1

Keywords

Navigation